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Abstract. In this paper, we propose Tweak-aNd-Tweak (TNT for short)
mode, which builds a tweakable block cipher from three independent
block ciphers. TNT handles the tweak input by simply XOR-ing the
unmodified tweak into the internal state of block ciphers twice. Due to its
simplicity, TNT can also be viewed as a way of turning a block cipher into
a tweakable block cipher by dividing the block cipher into three chunks,
and adding the tweak at the two cutting points only. TNT is proven to
be of beyond-birthday-bound 22n/3 security, under the assumption that
the three chunks are independent secure n-bit SPRPs. It clearly brings
minimum possible overhead to both software and hardware implementa-
tions. To demonstrate this, an instantiation named TNT-AES with 6, 6,
6 rounds of AES as the underlying block ciphers is proposed. Besides the
inherent proven security bound and tweak-independent rekeying feature
of the TNT mode, the performance of TNT-AES is comparable with all
existing TBCs designed through modular methods.
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1 Introduction

1.1 Background - The Need of BBB TBC

Together with the development of authenticated encryption (AE) in CAESAR
competition [1] and the on-going lightweight cryptography competition [64],
tweakable block ciphers (TBC) are playing a more and more important role.
Besides the plaintext, TBCs take a tweak as an additional input, which can be
viewed as an index to the underlying block cipher, so it becomes a family of
(independent) block ciphers v.s. a single instance of block cipher. Its formaliza-
tion is motivated by the needs of (more than one) independent block ciphers in
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some modes, e.g., OCB [67], while using multiple independent ciphers or keys
could cause efficiency issues. In contrast, using a TBC that typically lends itself
to very efficient (both software and hardware) implementations, a new instance
of block cipher could be obtained by simply choosing a new value of the tweak.

Beyond-Birthday-Bound Security. Most of the current (tweakable) block
cipher standards have a block length of 128 bits or less, providing a security
level at most 64 bits when instantiated in designs offering only birthday-bound
security. Such a security level has become largely inadequate [35]. Even worse,
in order to save hardware implementation costs, many lightweight block cipher
designs tend to have a smaller block length like 64 bits, providing a birthday
security of 32 bits only. Hence, the needs of modes providing BBB security are
emerging, and the same has been observed by Gueron and Lindell [35] and in
this whitepaper [2].

There are two different ways to construct TBCs. Following the modular app-
roach, they can be built from classical block ciphers via various modular con-
structions, and security is ensured by a reduction to that of the underlying block
ciphers. Alternatively, one could appeal to (probably more efficient) dedicated
algorithms, the security guarantees of which come from comprehensive crypt-
analysis. Below we’ll review both methods.

1.2 Modular Approach: TBCs from Block Ciphers

A classical popular approach is to construct TBCs from existing (traditional)
block ciphers in a black-box fashion. Such proposals are further divided into two
classes. The “old school” approach, initiated by Liskov et al. [54], works in the
so-called standard model, models the underlying block cipher as a pseudorandom
permutation. The “new school” approach recently popularized by Mennink [56]
models the block cipher as an ideal cipher. The two approaches deviate not
only in their security assumptions, but also in their design philosophies. Con-
cretely, standard assumption-based constructions typically tried to avoid tweak-
dependent rekeying, which were deemed as (arguably) costly. Another shortage of
rekeying is the unavoidable “hybrid security loss” in their security bounds [58,69]
(some withstand this loss using carefully-chosen parameters [17,61]). Such a loss
doesn’t appear in the ideal cipher model, and this is leveraged by many construc-
tions for good bounds and efficiency at the same time. Indeed, ideal cipher-based
TBCs have achieved ≥ n-bit security within 1 or 2 cipher-calls [43,53,77].

In this paper we follow the standard model. In this respect, the original
Liskov et al.’s paper [54] proposed two constructions that were subsequently
named LRW1 and LRW2 by Landecker et al. [51]. The former is based on a block
cipher E with key space KE and message space {0, 1}n, and is defined as

LRW1((K,K ′), T,X) = EK′
(
T ⊕ EK(X)

)
. (1)

where (K,K ′) ∈ KE × KE is the key, T ∈ T is the tweak, and X ∈ {0, 1}n is
the message. Unfortunately it is only CPA secure up to a tight birthday bound,
i.e., 2n/2 adversarial queries. Actually, achieving CCA security was an important
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motivation for their second proposal LRW2, which is based on a block cipher E
and message space {0, 1}n and an almost XOR-universal (AXU) family of hash
functions H = (HK)K∈KH

from some set T to {0, 1}n, and defined as

LRW2((K,K ′), T,X) = HK′(T ) ⊕ EK(HK′(T ) ⊕ X), (2)

where (K,K ′) ∈ KE × KH is the key. This construction was proved CCA secure
in [54] up to a tight birthday bound. To seek for beyond-birthday-bound (BBB)
secure TBCs, pioneered by Landecker et al. [51], subsequent works studied cas-
cade of LRW2 (with independent underlying keys): its 2-cascade was first proved
secure up to about 22n/3 queries [51] and latter improved to a tight bound of
23n/4 queries [44,59], while its r-cascade for general r was proved secure up to
roughly 2

rn
r+2 adversarial queries.

A somewhat independent series of works considered tweakable Even-Mansour
(TEM) ciphers that are built upon public random permutations [18,20,57], which
could also be instantiated with fixed-key block ciphers. It is important to note
their security is only provable in the ideal (permutation) model.

1.3 Development of Dedicated TBCs

The Tweakey framework was introduced in 2014 by Jean et al. [41], which pro-
vides a general guideline for TBC designs. The core idea is to treat the key and
tweak in the same way during the primitive design process so that the crypt-
analysis can be unified, and becomes simpler than before. So the word “tweakey”
is invented to reflect the combined input of tweak and key. Following tweakey
framework, various dedicated algorithms such as the Deoxys-BC in the Deoxys
AE design [42], SKINNY [7], and Kiasu [40] have been proposed. In detail,
SKINNY takes lightweightness into account, and hence makes use of lightweight
linear layer—0/1 matrices—almost MDS rather than MDS, although it still fol-
lows AES-like design strategy. Up to date, Deoxys is one of the finalists of the
CAESAR competition and SKINNY is one of the lightest TBCs in terms of area
in the optimized hardware implementations.

When the tweak length is long, TBC-based designs [3,38] can take advantage
of its efficiency to process additional input such as associated data. There is also
a recent direction of designing TBCs of short tweaks to offer a small family of
yet independent block ciphers [12], where tweaks are mainly used as domain
separators in the design of authenticated encryption schemes.

It is well-known that, to hide the key of a block cipher, it requires several
iterations of the simple round functions. Since Tweakey framework does not
distinguish key and tweak, the tweak input has been iterated the same amount
of rounds as well. We notice that, rather than hiding, the functionality of a
tweak is no more than an index to the block cipher in most of use-cases, and are
even assumed to be under attacker’s full control in some cryptanalytic settings.
Hence, the required level of “protection” for a tweak is essentially lower than that
for the key. Inspired by this observation, a natural question to be asked is: what
is the minimum number of iterations (or tweak addition) required to produce a
secure TBC (especially those with BBB security), with provable security.
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1.4 Our Approach (Hybrid of Two Approaches), Provable Security
of TBC Modes, and Instantiation with Long-Standing Modules
(Similar with AES-PRF)

We seek for an approach slotting between the above two and (hopefully) enjoying
the advantages of both, i.e., achieving (some level of) provable guarantees and
high efficiency at the same time. Our result is a proposal of a new design of
dedicated TBCs based on AES. Our approach is “prove-then-prune”, i.e., proving
security and then instantiating with a scaled-down primitive (a reduced-round
block cipher), that has been used in symmetric designs for a long time, see
e.g., [60] (while the terminology was due to Hoang et al. [37]). Below we elaborate
in detail.

TNT: A New TBC Construction with BBB Security. Our starting point
is a new block cipher-based TBC construction with provable BBB security. Con-
cretely, the idealized version of our mode is built upon three secret independent
random permutations π1, π2, and π3, and is defined as

TNTπ1,π2,π3(T,X) = π3

(
T ⊕ π2

(
T ⊕ π1(X)

))
,

as pictured in Fig. 1. We term our mode as TNT, meaning Tweak-aNd-Tweak. It
can also be viewed as a cascaded LRW1 TBC construction (if we “split” π2 into
two permutations, then the scheme turns into a cascade of two LRW1 construc-
tions).

X π1
S U π2

V W π3 Y

T T

Fig. 1. The TNTπ1,π2,π3 mode with the notations (for the intermediate values) used
in this paper.

While the original (two-permutation-based) LRW1 construction was proved
CPA secure up to birthday 2n/2 queries and it turns out to be tight, the security
of TNT (or cascaded LRW1) remains as a long-standing open problem. In this
paper, using the χ2 technique recently proposed by Dai et al. [24], we prove
the idealized TNT construction is CCA secure up to BBB 22n/3 queries. To our
knowledge, this constitutes the first “non-trivial” application of the χ2 technique
to domain expanding constructions, and our proof thus demonstrates relevant
issues and their solutions.

We refer to Table 1 for a summary of comparison to existing TBC construc-
tions (we omit the TEM ciphers as they either appear a bit theoretical or are
specific for sponges [57]). It is rather difficult to make a comparison with the
ideal cipher-based designs [43,53,56,77]. In general, they achieve ≥n bits secu-
rity (as mentioned) at the expense of a smaller safety margin (similar concern
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Table 1. Comparison with previous TBCs. The column ⊗/AXU states if the design
relies on AXU hash or field multiplications ⊗. The column tdk states if the design relies
on tweak-dependent rekeying. For all the ideal cipher-based designs, we assume using
an ideal cipher with n-bit keys and n-bit blocks.

#tweak #cost ⊗/AXU? tdk security (log2)

LRW1 n 2 SPRPs no no n/2 [54]
XEX n 1 SPRP yes no n/2 [67]
LRW2 arbitrary 1 SPRP yes no n/2 [54]
CLRW22 arbitrary 2 SPRPs yes no 3n/4 [44,59]
CLRW2r arbitrary r SPRPs yes no rn/(r + 2) [50]
Min t 2 SPRPs no yes max{n/2, n − t} [61]
˜F [1] n 1 ideal cipher no yes 2n/3 [56]
˜F [2] n 2 ideal ciphers no yes n [56]
˜E1, . . . , ˜E32 n 2 ideal ciphers no yes n [77]
XHX arbitrary 1 ideal cipher yes yes n [43]
XHX2 arbitrary 2 ideal ciphers yes yes 4n/3 [53]

TNT n 3 SPRPs no no 2n/3

has been raised in other settings [36]). Also, their provable bounds should be
interpreted with a bit of caution [58]. In terms of efficiency, it is widely believed
that tweak-dependent rekeying used in the above designs as well as [61] is a bit
costly, particularly when AES-NI is available.

It appears that LRW2 and its cascades are the closest designs. In short, while
LRW2 and CLRW2 accept long tweaks, their uses of AXU hash are expected
to result in a lower efficiency when n-bit tweaks already suffice. The additional
requirement of AXU hash usually results in lower software efficiency and/or
higher gate counts as additional registers and operations are needed.

Instantiation from AES. To take the advantage of the AES-NI for better soft-
ware performance, it is natural for us to instantiate TNT with AES. To further
improve the software performance, we reduce the number of rounds of each of
the permutations π1, π2, and π3 to 6, 6, and 6 rounds respectively (rather than
the full AES itself), which are named TNT-AES. Although, it is not possible to
assume the round-reduced AES to be ideal any more, we show, through com-
prehensive cryptanalysis, the security of TNT-AES are sound. Similar design
strategy was introduced by Hoang et al. [37] and used in the design of AES-
PRF [60] by Mennink and Neves. The estimated performance shows, with help
from AES-NI, TNT-AES is among the fastest TBCs in software, and in some
cases it can be implemented as light as AES itself in area constrained hardware
environment thanks to the simplicity of TNT, smaller than most of the existing
TBCs.
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Organization. The rest of the paper is organized as follows. Section 2 gives
the preliminary necessary for the introduction of the new mode in Sect. 3. The
security TNT is proven in Sect. 4. Section 5 proposes a concrete design following
TNT based on AES, and finally Sect. 6 concludes the paper.

2 Preliminary

2.1 Notation

For a finite set X , X
$←− X denotes selecting an element from X uniformly at

random and |X | denotes its cardinality.

2.2 TBC and Its Security

A tweakable permutation with tweak space T and message space M is a mapping
Π̃ : T ×M → M such that for any tweak T ∈ T , X �→ Π̃(T,X) is a permutation
of M. We denote TP(T , n) the set of all tweakable permutations with tweak
space T and message space {0, 1}n. A tweakable block cipher with key space K,
tweak space T , and message space M is a mapping TBC : K×T ×M → M such
that for any key K ∈ K, (T,X) �→ TBC(K,T,X) is a tweakable permutation in
TP(T , n).

A secure TBC should be indistinguishable from a tweakable random per-
mutation. As our mode TNT is specified in an idealized manner, our security
definition is also given for such cases. For this, we denote P(n) the set of all
n-bit permutations. By default, we always allow D to make forward and inverse
queries to its tweakable permutation oracle (though we do not write this explic-
itly). With these, for the TBC construction Cπ1,...,πr built upon r independent
secret n-bit permutations, we define the advantage of any distinguisher D break-
ing its strong tweakable pseudorandomness (STPRP) as

Advstprp
C (D) =

∣
∣
∣Pr[π1, . . . , πr

$←− P(n) : DCπ1,...,πr
= 1] − Pr[Π̃

$←− TP(T , n) : D ˜Π = 1]
∣
∣
∣.

And for any non-negative integer q, we define the insecurity of Cπ1,...,πr as

Advstprp
C (q) = maxDAdvstprp

C (D),

where the maximum is taken over all distinguishers D making exactly q queries
to the oracle.

The above definition focuses on the information-theoretic setting. Later in
Sect. 5 we will instantiate the multiple secret permutations π1, . . . , πr with multi-
ple “independent” block ciphers E1, . . . , Er using the same secret key K (thus the
key space does not increase with the number of permutations). Proving the indis-
tinguishability of such two systems (π1, . . . , πr) and ((E1)K , . . . , (Er)K) seems
out of reach of current techniques (note that existing works typically instanti-
ated π1, . . . , πr with the same block cipher using r independent keys K1, . . . , Kr,
which deviates from us). As such, our mode TNT will be specified only in the
idealized manner.



TNT: How to Tweak a Block Cipher 647

2.3 χ2 Method

For the proof, we will employ the χ2 method of Dai et al. [24]. We recall this
technique here. Below we mainly follow Dai et al.’s notations (with some nec-
essary supplementaries borrowed from Chen et al. [13]). Concretely, consider
two stateless systems S0 and S1 (e.g., S0 and S1 may be the tweakable ran-
dom permutation Π̃ and the TNT construction TNTπ1,π2,π3 respectively) and
any computationally unbounded deterministic distinguisher D that has query
access to either of these systems. The distinguisher’s goal is to distinguish the
two systems. It is well-known that, the distinguishing advantage AdvS0,S1(D)
is bounded by the statistical distance ‖pS0,D(·) − pS1,D(·)‖, where pS0,D(·) and
pS1,D(·) are the respective probability distributions of the answers obtained by
D. The χ2 method concerns with bounding ‖pS0,D(·) − pS1,D(·)‖. To this end,
if we denote the maximum amount of queries by q, we can define a transcript
Q = (τ1, . . . , τq) with τi = (Ti,Xi, Yi), and let Q� = (τ1, . . . , τ�) for every � ≤ q.
The distinguisher D can make its queries adaptively, but as it makes them in
a deterministic manner, the �-th query input is determined by the first � − 1
query-responses Q�−1.

For system Sb with b ∈ {0, 1} and fixed tuple Q�−1, we denote by pSb,D(Q�−1)
the probability that D interacting with Sb yields transcript Q�−1 for its first �−1
queries. If pSb,D(Q�−1) > 0, then we denote by pSb,D(R� | Q�−1) the conditional
probability that D receives response R� upon its �-th query, given transcript Q�−1

of the first � − 1 queries (that deterministically fixes the �-th query). Define for
any � ∈ {1, . . . , q} and any query-response tuple Q�−1:

χ2
(
Q�−1

)
=

∑

R�

(
pS1,D(R� | Q�−1) − pS0,D(R� | Q�−1)

)2

pS0,D(R� | Q�−1)
, (3)

where the sum is taken over all R� in the support of the distribution pS0,D(· |
Q�−1). The χ2 method states the following:

Lemma 1 (χ2 method [24, Lemma 3]). Consider a fixed deterministic distin-
guisher D and two systems S0,S1. Suppose that for any � ∈ {1, . . . , q} and any
query-response tuple Q�, pS0,D(Q�) > 0 whenever pS1,D(Q�) > 0. Then:

‖pS0,D(·) − pS1,D(·)‖ ≤
(
1
2

q∑

�=1

E
[
χ2(Q�−1)

]
)1/2

, (4)

where the expectation is taken over Q�−1 of the � − 1 first answers sampled
according to interaction with S1.

3 The Idealized TNT Mode

In this section, we describe our mode TNT. As discussed in Sect. 2, we only give
its idealized description, which is built upon secret random permutations rather
than efficient block ciphers.
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Concretely, TNT is built upon three independent secret random permutations
π1, π2, and π3, and is formally defined as

TNTπ1,π2,π3(T,X) = π3

(
T ⊕ π2

(
T ⊕ π1(X)

))
. (5)

4 Security Proof for TNT Mode

Theorem 1. When q ≤ 2n/2, it holds

Advstprp
TNT (q) ≤ 8q1.5

2n
. (6)

Proof. In our proof, S0 denotes the tweakable random permutation Π̃, while
S1 denotes the TNTπ1,π2,π3 TBC. The condition stated in Lemma 1, i.e., ∀Q�,
pS0,D(Q�) > 0 whenever pS1,D(Q�) > 0, is clearly satisfied.

Given Q�−1, let T� be the tweak of the �-th query (note that it is determined
by Q�−1). It is easy to see that, regardless of the direction of this query, it holds

p
˜Π,D(R� | Q�−1) =

1
2n − μ�

,

where μ� ≤ � − 1 is the frequency of the tweak value T� in Q�−1, i.e.,

μ� =
∣
∣
∣
{
(X,Y ) : (T�,X, Y ) ∈ Q�−1

}∣
∣
∣.

The real world probability pTNT,D(R� | Q�−1) however depends on the concrete
state of the �-th query and Q�−1, for which we distinguish eight cases as follows.

Case 1: the �-th query is forward TNT(T�, X�) → Y�, and X�, Y� ∈Q�−1,
i.e., ∃T ′,X ′, T ∗, Y ∗ : (T ′,X ′, Y�), (T ∗,X�, Y

∗) ∈ Q�−1. We write

pTNT,D(Y� | Q�−1) =Pr[TNT(T�,X�) → Y� | Q�−1]

=
∑

Inter

Pr[TNT(T�,X�) → Y� | Inter] · Pr[Inter | Q�−1],

where the sum is taken over all the vectors of intermediate values

Inter =
(
(S1, . . . , S�−1), (U1, . . . , U�−1), (V1, . . . , V�−1), (W1, . . . , W�−1)

)

that are possible to appear given Q�−1.
Now, for a certain intermediate vector Inter, it can be seen that there are

three possibilities, according to which we divide all intermediate vectors into
three disjoint classes A, B, and C:

– Class A: Pr[TNT(T�,X�) → Y� | Inter] = 1;
• i.e., the vector Inter specifies S� and W� as the values corresponding to X�

and Y�, as well as a input-output relation on π2 (subsequently abbreviated
as π2-relation) (Ui, Vi) such that T� ⊕ S� = Ui and T� ⊕ W� = Vi.
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– Class B: Pr[TNT(T�,X�) → Y� | Inter] = 1
N−β(Inter) , where β(Inter) is the

number of distinct U values in (U1, . . . , U�−1);
• i.e., the two corresponding values U� = T� ⊕ S� and V� = T� ⊕ W� (as

before) are “free”, so that Pr[π2(U�) = V� | Inter] = 1
N−β(Inter) .

– Class C: Pr[TNT(T�,X�) → Y� | Inter] = 0.
• i.e., the two corresponding values U� = T� ⊕ S� and V� = T� ⊕ W� (as

before) are “contradictory” to Inter: there exists a π2-relation (Ui, Vi) in
Inter such that

∗ T� ⊕ S� = Ui yet T� ⊕ W� = Vi; or
∗ T� ⊕ S� = Ui yet T� ⊕ W� = Vi.

By these, we have

Pr[TNT(T�,X�) → Y� | Q�−1]

=
∑

Inter∈A
Pr[Inter | Q�−1] +

∑

Inter∈B
Pr[Inter | Q�−1] ·

1
N − β(Inter)

. (7)

With this, we derive upper and lower bounds as follows.

The Upper Bound: It’s easy to see β(Inter) ≤ �−1. By this and Eq. (7), it holds

Pr[TNT(T�,X�) → Y� | Q�−1]

≤Pr[Inter ∈ A | Q�−1] + Pr[Inter ∈ B | Q�−1]︸ ︷︷ ︸
≤1

· 1
2n − �

. (8)

It remains to bound Pr[Inter ∈ A | Q�−1]. For this, note that once the values
in Inter except for (S�,W�) have been fixed, the number of choices for (S�,W�)
is at least (2n − α(Q�−1))(2n − γ(Q�−1)) ≥ 22n/4, where α(Q�−1) ≤ q ≤ 2n/2
and γ(Q�−1) ≤ q ≤ 2n/2 are the number of distinct values in (S1, . . . , S�−1)
and (W1, . . . , W�−1). Out of these ≥ 22n/4 choices, the number of choices that
ensure the desired property TNT(T�,X�) = Y� is at most � − 1, which results
from the following selection process: we first pick a pair of input-output (Ui, Vi)
with i ≤ � − 1, and then set S� = T� ⊕ Ui and W� = T� ⊕ Vi. Therefore,
Pr[Inter ∈ A | Q�−1] ≤ 4�

22n , and thus the upper bound in this case is

Pr[TNT(T�,X�) → Y� | Q�−1] ≤ 4�
22n

+
1

2n − �
. (9)

The Lower Bound: It can be seen β(Inter) ≥ μ�, since every previ-
ous query under the tweak T� gives rise to a unique pair (U, V ) in
((U1, V1), . . . , (U�−1, V�−1)). Therefore, still from Eq. (7), we have

Pr[TNT(T�,X�) → Y� | Q�−1] ≥
∑

Inter∈B
Pr[Inter | Q�−1] ·

1
2n − μ�

=Pr[Inter ∈ B | Q�−1] ·
1

2n − μ�
.
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As before, out of the (2n − α(Q�−1))(2n − γ(Q�−1)) choices of (S�,W�), the
number of choices that ensure the desired property T� ⊕ S� /∈ {U1, . . . , U�−1}
and T� ⊕ W� /∈ {V1, . . . , V�−1} is at least (2n − �)2. This means Pr[Inter ∈ B |
Q�−1] ≥ 2n−�

2n−α(Q�−1)
· 2n−�
2n−γ(Q�−1)

≥ (1 − �
2n )2 ≥ 1 − 2�

2n , and thus

Pr[TNT(T�,X�) → Y� | Q�−1] ≥
(
1 − 2�

2n

)
· 1
2n − μ�

. (10)

Summary. In all, in the first case, we have
∣
∣
∣Pr[TNT(T�,X�) → Y� | Q�−1] −

1
2n − μ�

∣
∣
∣

≤max
{

4�
22n

+
� − μ�

(2n − μ�)(2n − �)
,
2�
2n

· 1
2n − μ�

}
≤ 8�

22n
. (11)

Case 2: the �-th query is forward TNT(T�,X�)→ Y�, and X� ∈Q�−1,
Y� /∈ Q�−1, i.e., ∃T ′, Y ′ : (T ′,X�, Y

′) ∈ Q�−1, yet ∀T,X : (T,X, Y�) /∈ Q�−1.
Now, for a certain intermediate vector Inter, there are three possibilities, accord-
ing to which we divide all intermediate vectors into three disjoint classes A, B,
and C:

– Class A: there does not exist (Ui, Vi) such that Ui = T� ⊕ S�, where S� is
specified by Inter and corresponds to X�.

– Class B: there exists (Ui, Vi) such that Ui = T�⊕S�, and Pr[π3(T�⊕Vi) = Y�] =
1

2n−γ(Q�−1)
, where γ(Q�−1) is the number of distinct values in (Y1, . . . , Y�−1).

– Class C: there exists (Ui, Vi) such that Ui = T� ⊕ S�, and Pr[π3(T� ⊕ Vi) =
Y�] = 0.

By these, we have

Pr[TNT(T�,X�) → Y� | Q�−1]

=
∑

Inter∈A
Pr[Inter | Q�−1] · Pr[TNT(T�,X�) → Y� | Inter]

+
∑

Inter∈B
Pr[Inter | Q�−1] ·

1
2n − γ(Q�−1)

. (12)

The Upper Bound: For this we need to consider Pr[TNT(T�,X�) → Y� | Inter]
for any Inter ∈ A. Let U� = T� ⊕ S�. Then it can be seen

Pr[TNT(T�,X�) → Y� | Inter]
=

∑

V�∈{0,1}n

Pr[π2(U�) = V� | Inter] · Pr[π3(T� ⊕ V�) = Y� | Inter] (13)

≤
∑

V�∈{0,1}n

Pr[π2(U�) = V� | Inter]

︸ ︷︷ ︸
≤1

· 1
2n − γ(Q�−1)

.
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By this, the upper bound in this case is

Pr[TNT(T�,X�) → Y� | Q�−1] ≤
∑

Inter∈A∪B
Pr[Inter | Q�−1] ·

1
2n − γ(Q�−1)

≤ 1
2n − γ(Q�−1)

≤ 1
2n − �

.

The Lower Bound: Still by Eq. (13), for any Inter ∈ A we have

Pr[TNT(T�,X�) → Y� | Inter]
≥

∑

W�∈GW
Pr[π2(U�) = T� ⊕ W� | Inter] · Pr[π3(W�) = Y� | Inter],

where GW (“good W set”) is the set of W� such that:
– W� /∈ {W1, . . . , W�−1}, and
– T� ⊕ W� /∈ {V1, . . . , V�−1}.

It can seen that |GW| ≥ 2n − � − � + μ� = 2n − 2� + μ�: the reason is, for any
(Ti,Xi, Yi) ∈ Q�−1 with Ti = T�, W� = Wi ⇔ T� ⊕ W� = Vi. On the other hand,
Pr[π3(W�) = Y� | Inter] = 1

2n−γ(Q�−1)
≥ 1

2n−μ�
, and Pr[π2(U�) = T� ⊕ W� |

Inter] = 1
2n−β(Inter) ≥ 1

2n−μ�
. Therefore, for any Inter ∈ A we have

Pr[TNT(T�,X�) → Y� | Inter] ≥ 2n − 2� + μ�

(2n − μ�)2
.

By these and Eq. (12), we have

Pr[TNT(T�,X�) → Y� | Q�−1]

≥
∑

Inter∈A∪B
Pr[Inter | Q�−1] ·

2n − 2� + μ�

(2n − μ�)2

=
(
1 − Pr[Inter ∈ C | Q�−1]

)
· 2

n − 2� + μ�

(2n − μ�)2
.

To bound Pr[Inter ∈ C | Q�−1], note that if Inter ∈ C, then there exists
Yi ∈ {Y1, . . . , Y�−1} such that Pr[TNT(T�,X�) = Yi | Q�−1] = 1. For each such
Yi the probability is at most 4�

22n as analyzed in Case 1. Since there are at most
� − 1 ≤ � choices for this Yi, we obtain

Pr[TNT(T�,X�) → Y� | Q�−1] ≥
(
1 − 4�2

22n

)
· 2

n − 2� + μ�

(2n − μ�)2

as the lower bound. Further note that
1

2n − μ�
−

(
1 − 4�2

22n

)
· 2

n − 2� + μ�

(2n − μ�)2

≤ 1
2n − μ�

− 2n − 2� + μ�

(2n − μ�)2
+

4�2

22n
· 2

n − 2� + μ�

(2n − μ�)2

≤ 2(� − μ�)
(2n − μ�)2

+
8�2

23n
≤ 8�

22n
+

8�
22n

=
16�
22n

.
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Summary. In all, in the second case, we have
∣
∣
∣Pr[TNT(T�,X�) → Y� | Q�−1] −

1
2n − μ�

∣
∣
∣

≤max
{

1
2n − �

− 1
2n − μ�

,
16�
22n

}
≤ 16�

22n
. (14)

Case 3: the �-th query is forward TNT(T�, X�)→ Y�, and X� /∈ Q�−1,
Y� ∈ Q�−1. The analysis is similar to Case 2 by symmetry, resulting in the same
bound

∣
∣
∣Pr[TNT(T�,X�) → Y� | Q�−1] −

1
2n − μ�

∣
∣
∣ ≤ 16�

22n
. (15)

Case 4: the �-th query is forward TNT(T�, X�)→Y�, and X�, Y� /∈Q�−1.
The analyses for this case heavily resemble Case 2. First, the same upper bound

Pr[TNT(T�,X�) → Y� | Q�−1] ≤ 1
2n − γ(Q�−1)

≤ 1
2n − �

can be established. Second, for any Inter such that Pr[Inter | Q�−1] > 0, we
have

Pr[TNT(T�,X�) → Y� | Inter]
≥

∑

S�∈GS,W�∈GW
Pr[π1(X�) = S� | Inter] · Pr[π2(T� ⊕ S�) = T� ⊕ W� | Inter]

· Pr[π3(W�) = Y� | Inter],

where GS is the set of S� such that:

– S� /∈ {S1, . . . , S�−1}, and
– T� ⊕ S� /∈ {U1, . . . , U�−1},

and GW is the set of W� such that:

– W� /∈ {W1, . . . , W�−1}, and
– T� ⊕ W� /∈ {V1, . . . , V�−1}.

It is easy to see |GS|, |GW| ≥ 2n − 2� + μ�, Pr[π1(X�) = S� | Inter] =
1

2n−α(Q�−1)
≥ 1

2n−μ�
, Pr[π3(W�) = Y� | Inter] = 1

2n−γ(Q�−1)
≥ 1

2n−μ�
, and

Pr[π2(U�) = T� ⊕ W� | Inter] = 1
2n−β(Inter) ≥ 1

2n−μ�
. Therefore, we have

Pr[TNT(T�,X�) → Y� | Inter] ≥ (2n − 2� + μ�)2

(2n − μ�)3
,

for which

1
2n − μ�

− (2n − 2� + μ�)2

(2n − μ�)3
≤ 4(� − μ�)(2n − �)

(2n − μ�)3
≤ 16�

22n
.
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Therefore,
∣
∣
∣Pr[TNT(T�,X�) → Y� | Q�−1] −

1
2n − μ�

∣
∣
∣

≤max
{

1
2n − �

− 1
2n − μ�

,
16�
22n

}
≤ 16�

22n
. (16)

To conclude, when the �-th query is forward, from Eqs. (11), (14), (15), and
(16) we have

(
pTNT,D(Y� | Q�−1) − 1

2n − μ�

)2

≤
(16�
22n

)2

≤ 256�2

24n
.

The remaining Cases 5, 6, 7, and 8 concern with the case where the �-th query
is backward, and the analyses are similar to Cases 1, 2, 3, and 4 by symmetry,
resulting in the same bound

(
pTNT,D(X� | Q�−1) − 1

2n − μ�

)2

≤
(16�
22n

)2

≤ 256�2

24n
.

Consequently,

χ2(Q�−1) ≤
∑

R�

256�2/24n

1/(2n − μ�)
≤ 2n · 2n · 256�

2

24n
≤ 256�2

22n
,

and
1
2

q∑

�=1

E
[
χ2(Q�−1)

]
≤ 1

2

q∑

�=1

256�2

22n
≤ 1

2
· 128q

3

22n
=

64q3

22n
,

which implies Eq. (6) by Lemma 1. ��

5 Concrete Proposals

In this section, we propose our instantiation of the TNT construction based on
AES, which allows fast software implementations when AES-NI are available.
We call the instantiation TNT-AES. To also enjoy the long-standing security of
AES, we try to make minimum possible modifications over AES. Following these
considerations, we only extend the number of rounds without any modification
to its round function or key schedule, and pick the respective numbers of rounds
for the three permutations π1, π2, and π3 so that the design is secure against
all relevant attacks. More explicitly, when the tweak T = 0, TNT-AES simply
becomes AES with more rounds, which clearly leaves higher security margins
over AES. Besides, we let the last round be complete instead of missing the
MixColumns operation. In the remainder of the section, we give the description
of TNT-AES, followed by a comprehensive cryptanalysis, and a comparison of
software and hardware performances against other existing TBCs with similar
security levels.
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5.1 Instantiation Based on AES

The Advanced Encryption Standard (AES) [23] is an iterated block cipher with
block size 128 bits and secret key sizes 128, 192, and 256 bits. The internal
state of AES, as well as the round keys, can be represented as a 4 × 4 matrix
whose elements are byte value (8 bits). The round function consists of four basic
transformations in the following order (see Fig. 2):

– SubBytes (SB) is a nonlinear substitution that applies the same S-box to each
byte of the internal state.

– ShiftRows (SR) is a cyclic rotation of the i-th row by i bytes to the left, for
i = 0, 1, 2, 3.

– MixColumns (MC) is a multiplication of each column with a Maximum Dis-
tance Separable (MDS) matrix over GF(28).

– AddRoundKey (AK) is an exclusive-or with the round key.

SB
0
1
2
3

0 1 2 3

S
S
S
S

S
S
S
S

S
S
S
S

S
S
S
S

SR MC AK

Fig. 2. AES round function

At the very beginning of the encryption, an additional pre-whitening key
addition is performed, and the last round is different from the normal rounds
by omitting the MixColumns operation. AES-128, AES-192, and AES-256 share
the same round function with different numbers of rounds: 10, 12, and 14,
respectively.

The key schedule of AES transforms the master key into subkeys that are
used in each of the rounds. Here, we describe the key schedule of AES-128. The
128-bit master key is divided into four 32-bit words (W [0],W [1],W [2],W [3]),
then W [i] for i � 4 is computed as

W [i] =

{
W [i − 4] ⊕ SB(RotByte(W [i − 1])) ⊕ Rcon[i/4] i ≡ 0 mod 4,
W [i − 4] ⊕ W [i − 1] otherwise.

The i-th round key is the concatenation of 4 words W [4i] ‖ W [4i+1] ‖ W [4i+
2] ‖ W [4i + 3]. RotByte is a cyclic shift by one byte to the left, and Rcon are
the round constants defined as

Rcon[i] =

{
1 i = 0,
2 · Rcon[i − 1] otherwise,

where ‘·’ denotes multiplication in GF(28) with irreducible polynomial x8+x4+
x3 + x + 1.
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Although AES-128 consists of 10 rounds, it can be naturally extended to more
rounds, each composed of all 4 transformations (AddRoundKey ◦ MixColumns ◦
ShiftRows ◦ SubBytes), and the pre-whitening key addition to the first round is
kept as it is. Then, TNT-AES[n1, n2, n3] is defined to be the extension of AES to
(n1+n2+n3) rounds, i.e., π1, π2, π3 are of n1, n2, n3 full AES rounds respectively,
and the 128-bit tweak is XOR-ed into the internal state at the output of π1 and
π2. It is natural to set n1 = n3 due to the symmetry of the design. Concretely,
we define TNT-AES[6, 6, 6], and will use TNT-AES to denote this choice for the
sake of simplicity. We will justify the round numbers in the security analysis
below.

5.2 Preliminary Cryptanalysis

In this subsection, we give our preliminary cryptanalysis against TNT-AES. As
TNT-AES consists of 18 rounds in total, which is 8 more rounds than AES-128,
we expect higher security margins of TNT-AES when the tweak is treated as a
given constant. Hence, we focus on only the cases where the tweaks help the
attack from cryptanalysts’ point of view, i.e., it is assumed the tweak is under
the attacker’s full control (open tweak), and possibly extends the existing attacks
against round-reduced AES. Under such a setting, we verify the most efficient
attacks in terms of number of attacked rounds, against TNT-AES and claim the
absence of key-recovery attack against the full TNT-AES in the single-key setting.
While we do not claim security under the related-key setting for TNT-AES due
to lack of security proof for TNT in such setting, our preliminary cryptanalysis
below shows that there is no key-recovery attack either.

Following the proven security bound of TNT, TNT-AES offers 2n/3-bit secu-
rity, i.e., there exists no key-recovery attack, given that the data (the combina-
tion of tweak and plaintext with no restriction on individual input) and time
complexities are bounded by 22·128/3 � 285. Due to the fact that there is no
attack against TNT matching the 22n/3 bound, all our security analysis against
TNT-AES are following the 2n = 2128 bound for both data and time. This allows
TNT-AES offering higher security strength should a better than 2n/3-bit bound
be proven for TNT. In summary, we claim that there is no shortcut attack on
TNT-AES better than the generic attacks against the corresponding TNT mode.

In what follows, explicit security margins are given under each attack method
whenever possible. Before moving to the individual attack methods, an overview
of the impact of the tweak to the security at model level is given as follows.
As mentioned above, the security margin will be higher for TNT-AES when
tweak is a given constant, and we call such a tweak inactive. When the tweak is
active, it may be used to cancel differences in differential attack, or to be used
as the source of input structure in integral attacks. Under the single-key setting,
the activeness of the round functions will be consistent within each of the three
permutations π1, π2, and π3. This allows us using 0/1 to denote the activeness of
the permutations with 1 for active (0 for inactive), and a simple exhaustive search
shows there are activity patterns {(0, 1, 0), (0, 1, 1), (1, 1, 0), (1, 0, 1), (1, 1, 1)} for
differential attacks, and {(1, 1, 1), (1, 1, 0), (0, 1, 1)} for integral attacks and alike.
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Differential and Linear Attacks. In the single-key setting, we will employ
the known results of 4-round AES to justify the security of TNT-AES. It is well-
known that there are at least 25 active S-boxes in 4 rounds of AES, which makes
sure that there exists no 4-round differential characteristic (resp. linear approxi-
mation) with differential probability (resp. linear correlation) higher than 2−6×25

(resp. 2−3×25) [22]. For the maximum expected differential and linear probabil-
ity (MEDP and MELP), known results can be obtained following the work of
Keliher and Sui [47], which suggests that the upper bound on the MEDP (and
MELP) of 4-round AES is about (53/234)4 ≈ 2−110. For TNT-AES in the single-
key setting where the difference can be injected on the plaintext or the tweak,
there is at least one active permutation among π1, π2, π3 since their activity pat-
terns fall in {(0, 1, 0), (0, 1, 1), (1, 1, 0), (1, 0, 1), (1, 1, 1)}. As long as π2 is active,
there must be more than 25 active S-boxes. In the case of (1, 0, 1), it happens
only when the first addition of the tweak cancels out the differences introduced
from plaintext through π1, and the same difference is then re-introduced through
the second addition of tweak through π3. Due to the fact that the same tweak is
added and the difference in tweak is the same as well, π1 and π3 can be concate-
nated together with respective to differences. Note that π1 + π3 is of 12 rounds
in total, out of which any 4 consecutive rounds will ensure 25 active S-boxes.
We also note the security analysis of TNT under such a setting is very similar
to that of AES-PRF [60] except one has the control over the extra input tweak
in TNT added to the unknown internal state.

In the related-key setting, we only considered differential cryptanalysis, as
there is no cancellation of active S-boxes between subkeys and the state in linear
approximations. In [73], it is shown that in the related-key setting, there are
at least 21 active S-boxes in consecutive 6 rounds of AES-128, and the optimal
6-round differential has probability 2−131. Therefore, no useful related-key dif-
ferential characteristic covering more than π2 can be found no matter whether
there is a difference in the tweak or not.

Impossible-Differential Attacks. In [71], it is proven that there does not
exist any truncated impossible-differential of AES which covers more than 5
rounds. Furthermore, the best impossible-differential attack, in terms of number
of attacked rounds, is 7 rounds against AES-128 [55]. Following a similar dis-
cussion for differential attacks, when π2 is active, impossible-differential attack
does not apply naturally since π2 is of 6 rounds, more than what impossible-
differential distinguisher can cover. For the case of activity pattern (1, 0, 1), there
are 12 rounds in total for π1 + π3, more than the best attack against AES-128
can cover.

The Demirci-Selçuk Meet-in-the-Middle Attack. The Demirci-Selçuk
meet-in-the-middle attack led to the best cryptanalytic result on 7 rounds of
AES-128 in the single-key setting, where data/time/memory complexities are
below 2100 [25]. The distinguisher covers 4 rounds, following a differential char-
acteristic. Note, the distinguisher here tries to limit the number of possibilities
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for the actual values related to the differential characteristic, and it is not clear
how the addition of the tweak helps reduce that. Actually, it is not even clear
the addition of round key can help reduce the counts either. Hence, round keys
are treated as independent fixed constants in such attacks. Thus, we can treat
the tweak in the same way. Therefore, the Demirci-Selçuk meet-in-the-middle
attack would work in the same way on TNT-AES as on AES, and 7 rounds of
TNT-AES can be attacked.

Yoyo Tricks. In [68], Rønjom et al. presented several key-independent yoyo-
distinguishers on 3- to 5-round AES, which require up to 225.8 data and 224.8 XOR
computations. A key-independent impossible-differential yoyo-distinguisher on
6-round AES requiring an amount of 2122.83 data was also proposed. Besides, a
key-recovery attack on 5-round AES requiring practical complexities was devised
based on the 4-round yoyo-distinguisher. In these attacks, the attacker queries
pair of plaintexts to the encryption and uses swap operation on the obtained
pair of ciphertexts to generate new queries to the decryption, and observes dif-
ference in the obtained pair of plaintexts, then she may continually construct
new pairs of plaintexts by swapping words in the obtained pairs and iterate
the same procedure enough times. It can be seen that, instead of collecting all
chosen plaintexts/ciphertexts (CPs/CCs) at once, these attacks use adaptively-
chosen-plaintexts/-ciphertexts (ACPs/ACCs). In TNT-AES, tweaks are always
inserted as input to the encryption/decryption, and will never be output. So, for
activity pattern (0, 1, 1) (resp. (1, 1, 0) for decryption), the attacker cannot play
the yoyo game by adaptively choosing and observing the differences of tweak
pairs and ciphertext (resp. plaintext) pairs. Accordingly, we claim that these
yoyo-distinguishers and yoyo-distinguisher-based key-recovery attacks cannot be
directly applied in their current form to TNT-AES.

Subspace Trail Attacks. Subspace trail cryptanalysis [32] can be seen as
a generalization of invariant subspace cryptanalysis [52], whereas it can be
launched independently on specific choices of round constants or subkeys. By
analyzing subspace trails, Grassi et al. re-interpreted the 3-round truncated
differential and integral, the 4-round impossible-differential and integral dis-
tinguishers on AES [33]. Besides, new distinguishers on round-reduced AES
are found using subspace trail cryptanalysis, including the 5-round impossible-
differential distinguisher [33], the 5-round multiple-of-8 distinguisher [34], the
4-round mixture-differential [31], and the 5-round (probabilistic, threshold,
and impossible) mixture-differential distinguishers [30]. Exploiting the 4-round
mixture-differential distinguisher, a record for key-recovery attack on 5-round
AES-128 in single-key model is set [4]. In [6], Bardeh and Rønjom proposed the
exchange attacks. Like in yoyo and mixture-differential attacks, exchange attacks
also involve swap (exchange) operations on the pairs of chosen data. On 6-round
AES, the exchange distinguishers requires 288.2 CPs and 288.2 encryptions. In
the attacks, new plaintext pairs are obtained by exchanging certain active diag-
onal of other pairs that are different in diagonals, and an invariant property on
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the number of active columns of the differences of ciphertext pairs under such
exchange operation are considered.

Using subspace trail cryptanalysis and comparing with distinguishers on
round-reduced AES, we analyze distinguishers and corresponding attacks on
round-reduced TNT-AES. The activity patterns of the three permutations that
we considered are (0, 1, 0), (1, 0, 1), (0, 1, 1), (1, 1, 0), and (1, 1, 1). The activity
pattern (0, 1, 0) requires that all differences are comes from tweaks and canceled
by the same tweaks through n2 (i.e., 6) AES-rounds, which has no shortcut
method up to now. Considering that all subspace-trail-based distinguishers on
round-reduced AES are no more than n2 (i.e., 6) AES-rounds, it seems hard to
construct an exploitable subspace trail under activity patterns (0, 1, 1), (1, 1, 0),
(1, 1, 1), which indicate more than a chunk of active 6-round AES. The activity
pattern (1, 0, 1) implies that the coset of subspace related to the internal states
at the end of π1 (resulted from a set of plaintexts) equals a coset of the same
subspace formed by the chosen tweaks (and the differences between tweak pairs
should cancel the differences caused by the plaintext pairs), and thus the coset
of subspace formed by the chosen tweaks will cause the internal states at the
beginning of π3 forming a coset of the same subspace. A subspace trail on inter-
nal states can be seen as bypassing π2 via choosing a coset of subspace of the
tweak. Thus, devising an attack using a subspace trail under activity pattern
(1, 0, 1) requires that one can devise a subspace trail attack on the concatenated
permutation π3 ◦ π1 that is of (n1 + n3) AES-rounds, which is unknown when
(n1 + n3) > 6. In Appendix A, we discuss in detail the subspace-trail-based
distinguishers and key-recovery attacks on round-reduced TNT-AES.

Cube Attack, Dynamic Cube Attack. AES is immune to cube attacks [27]
or dynamic cube attacks [28] due to the high algebraic degree of the AES S-box.
Specifically, the algebraic degree is 7 for one round of AES and increases to 32
(<72) and 128 (<32 × 7) for two and three rounds. Therefore, AES, which has
10 rounds, is believed to be resistant to such types of attacks. So is TNT-AES
since it has more rounds than AES.

Integral Attacks and Division Property. The integral attacks utilize an
integral distinguisher for 3 rounds (or 4 rounds without MixColumns for the last
round), with a starting point of ALL values for a diagonal and a BALANCED
output, i.e., the sum of each individual byte is 0. The best attack setting will
be to utilize the degrees of freedom from the tweak to achieve the distinguisher
starting from the input of π2 in forward direction with activity pattern (0, 1, 1)
(or output of π2 in backward direction with activity pattern (1, 1, 0)). The attack
will start with a fixed plaintext, and take ALL values of a diagonal from tweak.
Thus, the target is π2 + π3 only with a secret input to π2. In the key-recovery
phase, the attacker is able to append one round only, so this attack will work for
at most n1 + 5 out of (n1 + n2 + n3) rounds, i.e., 6 + 5 out of 18 for TNT-AES.
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The division property due to Todo et al. [74,75] can be viewed as an extension
of integral distinguisher, which has been successfully applied to many block
ciphers. However, there is no reported results on AES better than integral attack
so far.

Slide Attacks. The slide attack was first described by Biryukov and Wag-
ner [10,11] in 1999 to attack round-reduced DES. The core idea is to make use
of the similarity of the round functions and that of key schedule. Thus, the dif-
ference of encryption process in its original form and one (or few) rounds shifted
is within control, e.g., with high probability. The addition of tweak will allow
canceling the difference in at most one round, while TNT-AES has 8 more rounds
than AES-128. Hence, we expect higher security margin here. Furthermore, there
is no reported slide attack against full AES-128 so far.

(Related-Subkey) Boomerang Attacks. Boomerang attacks [76] construct
long distinguishers by connecting two short differential characteristics. Recently,
a new tool named Boomerang Connectivity Table [16] was proposed to formulate
the dependency that the two differential characteristics contain and offer guid-
ance towards better boomerang distinguishers. We utilize the framework of the
boomerang connectivity table when mounting boomerang attacks on TNT-AES.
First, we consider the single-key setting where the difference can be introduced
on the plaintext or the tweak. When the difference is introduced only on the
tweak, as shown in Fig. 3 in Appendix B, high-probability boomerang distin-
guishers can be constructed on n1 + n2 + n3 rounds, where n1, n3 can be any
number and n2 < 6. When n2 ≥ 6, such high-probability distinguishers do not
exist. Note that these distinguishers with zero plaintext and ciphertext difference
are not useful in key-recovery attacks. When the difference is also introduced to
the plaintext or ciphertext, by making π2 inactive through the tweak difference,
the cipher can be seen as π1 ◦ π3 with respective to differences and boomerang
attacks of n2 + r rounds can be mounted, where r is the number of rounds that
boomerang attacks of AES-128 can cover and is 5. That is, only 11 rounds can be
attacked. Next, we consider the related-subkey setting where the key difference
can be injected on a round key. The related-subkey setting is more powerful
and usually allows longer boomerang distinguishers than the related-key set-
ting where the difference is injected on the master key. In the related-subkey
setting, there exists a 6-round boomerang distinguisher of AES-128 with proba-
bility 2−109.42 [70]. This distinguisher can be naturally extended to the 7 middle
rounds of TNT-AES with the same probability under the condition that the
tweak difference cancels the input difference or the output difference of the 6-
round boomerang distinguisher. When we add one more round to the bottom
or to the top of the 7-round distinguisher, the numbers of active S-boxes will
increase at least by one, leading to a negligible probability. Therefore, there
seem no boomerang distinguishers of TNT-AES in the related-subkey setting
that cover more than 8 rounds.
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5.3 Performance

Software Performance. We estimate the software performance of TNT-AES
on the basis of the best results of AES software provided by Park et al. [65]. In
what follows, we consider both “Plaintext” and “Tweak” as data since when used
in some authenticated encryption schemes, both of them are used to process data
such as associated data. Hence, the software performance is then calculated as
the total number of CPU cycles divided by the total byte length of plaintext
and tweak of the TBCs. To obtain a fair comparison, we estimate the same for
other existing TBCs as well (omitting their additional cost for updating tweaks),
using the following formula:

original speed × block size
block size + tweak size

. (17)

For TNT-AES, the number of rounds are different from AES. To evaluate the
performance, we multiply a factor to the speed of AES. Accordingly, the formula
we used to calculate the software speed of TNT-AES is (where, AES means AES-
128):

speed of AES × block size
block size + tweak size

× TNT-AES round number
AES round number

. (18)

We note that the optimization technique proposed in [65] is for the CTR
mode of AES, which extends the counter-mode caching [9,78]. It caches and
reuses intermediate results up to AES round 1 (R1) or up to AES round 2 (R2).
For TNT-AES, tweaks are added until round (n1 + 1). Thus, this optimization
technique is applicable. Whereas, for other TBCs in which tweaks are added
before the first round, this technique may not be applicable.

Table 2 presents the estimated results on software performance of TNT-AES,
together with the results of other TBCs under the similar setting (considering
both “Plaintext” and “Tweak” as data).

Rekeying and Retweaking. To see the scenario that profits considerably by using
a tweakable block cipher processing tweak efficiently, we performed a perfor-
mance comparison between retweaking in TNT-AES and rekeying in AES-128.
Table 3 reports the timing results. Because in the AES-NI set, the reciprocal
throughput of the AESKEYGENASSIST instruction that assists the key-schedule is
higher than that of the instruction AESENC that executes one round of encryp-
tion, in Table 3, it can be seen that the process of rekeying in AES becomes
slower. Whereas, the process of retweaking in TNT-AES benefits a lot from the
fast AES-NI instruction for encryption.1

1 Please refer to https://github.com/TNT-AES/Rekeying_vs_Retweaking for a very
simple implementation of the TNT-AES encryption and this performance comparison.

https://github.com/TNT-AES/Rekeying_vs_Retweaking
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Table 2. A table of comparison with other TBCs on software (all TBCs are with 128-
bit block, 128-bit master key). The platform is Intel Haswell CPU i7-4770, which is the
commonly used CPU in references [8,40,42,65].

Cipher Data type Tech. Speed in cycles per byte, given messages in bytes Ref.
128 256 512 1024 2048 4096 8192 20480 40960 65536

AES Plaintext Table-
based

8.38 8.34 8.37 8.37 [65]

Plaintext Bitsliced 4.70 4.43 4.40 4.40 [65]
Plaintext AES-NI

1 × 1 R1
1.03 1.02 1.07 1.07 [65]

Plaintext AES-NI
1 × 1 R2

0.93 0.92 1.04 1.04 [65]

Plaintext AES-NI
1 x 4 R1

0.63 0.62 0.62 0.62 [65]

Plaintext AES-NI
1 x 4 R2

0.59 0.58 0.58 0.58 [65]

TNT- AES Plaintext
+ Tweak

Table-
based

7.54 7.51 7.53 7.53 � [65]

Plaintext
+ Tweak

Bitsliced 4.23 3.99 3.96 3.96 � [65]

Plaintext
+ Tweak

AES-NI
1 × 1 R1

0.92 0.92 0.97 0.96 � [65]

Plaintext
+ Tweak

AES-NI
1 × 1 R2

0.83 0.83 0.94 0.94 � [65]

Plaintext
+ Tweak

AES-NI
1 × 4 R1

0.57 0.56 0.56 0.56 � [65]

Plaintext
+ Tweak

AES-NI
1 × 4 R2

0.53 0.52 0.52 0.52 � [65]

SKINNY
-128-128

Plaintext Bitsliced-
64-block

† 3.78 [8]

SKINNY
-128-256

Plaintext
+ Tweak

Bitsliced-
64-block

‡ 2.27 [8]

Deoxys
-BC-256

Plaintext AES-NI 4.74 2.85 1.90 1.43 1.18 1.07 1.01 0.96 [42]

Plaintext
+ Tweak

AES-NI 2.37 1.43 0.95 0.72 0.59 0.54 0.51 0.48 [42]

Kiasu�=
-BC-64

Plaintext AES-NI 0.97 0.84 0.78 0.76 0.75 0.74 [40]

Plaintext
+ Tweak

AES-NI 0.65 0.56 0.52 0.51 0.50 0.49 [40]

- The reference for TNT-AES indicated by � means that basing on the results of AES in [65] and
using Eq. (18), we calculated the presented results for TNT-AES.
- The value for SKINNY-128-256 indicated by ‡ is calculated using the value for SKINNY-128-128
indicated by † basing on a formula similar to Eq. (18).

Hardware Performance. We estimate the hardware performance of TNT-AES
with area minimization as optimizations target. The current record of minimized
area of AES is kept by the bit-serial implementations provided by Jean et al. [39].
Apart from AES, Jean et al. also provided bit-serial implementations of another
tweakable block cipher SKINNY. Using those state-of-the-art results provided
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by Jean et al. [39], we estimate the area and latency of TNT-AES and make
comparisons with other TBCs. The results are summarized in Table 5.

In the table, results for AES, SKINNY-128-256, and Deoxys-BC-256 are all
from existing studies. The results for TNT-AES are calculated using the following
method based on the results for AES. Let δ be the number of bits in the data
path in all implementations. Let C1DFF be the cost of a 1-bit D flip-flop (D FF),
let CXOR be the cost of a 2-input XOR gate, and let CMUX be the cost of a 2-to-1
Multiplexer in a library. We use Table 4 to estimate C1DFF, CXOR, and CMUX in
various libraries.

Table 3. Software performance of AES-128 when rekeying for every block and that of
TNT-AES when fixing a key but retweaking for every block, both with plaintexts as
data (unlike in Table 2 where we consider both “Plaintext” and “Tweak” as data), and
both with help of AES-NI (on an Intel(R) Core(TM) i7-8565U CPU 1.80 GHz, which
belongs to products formerly Whiskey Lake).

|M | (bytes) Rekeying in AES-128 Retweaking in TNT-AES
(cycles/byte) (cycles/byte)

128 4.60 1.50
256 4.60 1.00
512 4.60 0.80

1024 4.60 0.70
2048 4.60 0.60
4096 4.60 0.60
8192 4.60 0.60

Compared with implementations of AES, the additional area cost for imple-
mentations of TNT-AES comes from the cost for storing a 128-bit tweak and
the cost for implementing the XOR with tweak (we ignore the additional cost
for the signals controlling the tweak/key inputs). We note that there are cases
where as input, the tweak can be sent twice by the external provider. In such
cases, extra storage for the tweak can be saved. We note that this is possible
for a design without a “tweak-schedule”. For other designs, such as that permute
the bytes of the tweak, this becomes difficult as it requires this permutation
to be followed by external provider if not stored locally. In TNT-AES, there
is no tweak-schedule, hence no storage for tweak is required. When storage is
required, the 128-bit tweak can be stored using 128 1-bit D FF. To implement
the XOR with tweak, besides δ 2-input XOR gates, δ 2-to-1 multiplexers are also
required for selecting the bits of tweak after the n1-th round and the (n1+n2)-th
round and selecting constant 0 after other rounds. The additional area cost for
XOR gates and multiplexers is δ × (CXOR + CMUX). Thus, additional area cost is
128 × C1DFF + δ × (CXOR + CMUX) when the tweak needs to be stored locally, and
δ×(CXOR+CMUX) otherwise. To get a better view of the performances, we provide
the gate sizes for both scenarios.
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Table 4. The (estimated) cost (in Gate Equivalent, GE) of regular flip-flops, scan
flip-flops, 2-input XOR gates, and 2-to-1 Multiplexers in different libraries.

UMC 180 UMC 130 UMC 90 Ngate 45 IBM 130

1-bit D FF 4.67 5.00 4.25 5.67 4.25
1-bit Scan FF 6.00 6.25 5.75 7.67 5.50

1-bit XOR 2.67 2.75 2.50 2.00 2.00
2-to-1 MUX 2.33 2.25 2.25 2.33 2.25

Table 5. A table of comparison with other TBCs on hardware area (in GEs) and
latency (all TBCs are with 128-bit block, 128-bit master key, and 128-bit tweak)

Cipher data UMC 180 UMC 130 UMC 90 Ngate 45 IBM 130 Latency Ref.

path GEs GEs GEs GEs GEs Cycles

Bits

AES 1 1727 1902 1596 1982 1560 ∗ 1776/168 [39]

2 1796 1992 1667 2054 1625 ∗ 888/84 [39]

4 1920 2168 1784 2146 1731 ∗ 520/50 [39]

8 2112 2360 1968 2337 1912 ∗ 282/27 [39]

8 2400 3574 2292 2768 2182 ∗ 226/21 [63]

TNT- AES 1 † 2330/1732 † 2547/1907 † 2145/1601 † 2712/1986 † 2108/1564 3152 � [39]

2 † 2404/1806 † 2642/2002 † 2221/1677 † 2788/2063 † 2178/1634 1576 � [39]

4 † 2538/1940 † 2828/2188 † 2347/1803 † 2889/2163 † 2292/1748 932 � [39]

8 † 2750/2152 † 3040/2400 † 2550/2006 † 3097/2372 † 2490/1946 502 � [39]

8 † 3038/2440 † 4254/3614 † 2874/2330 † 3528/2803 † 2760/2216 394 � [63]

SKINNY-
128-256

1 2082 2278 1937 2501 1905 8448 [39]

2 2130 2318 1988 2554 1941 4224 [39]

4 2248 2433 2108 2694 2044 2112 [39]

8 2456 2662 2325 2949 2223 1056 [39]

Deoxys-
BC-256

8 2860 338 [42]

∗ In column 8 for AES, in the form x/y, x is the number of cycles taken by the entire encryption, y

is the number of cycles taken by one full round which is used to estimate the latency of TNT-AES.
† In column 3–7 for TNT-AES, in the form x/y, x is the area when the tweak is stored locally, y is
the area when the tweak is not stored locally.
� The references for TNT-AES indicated by � means that basing on the results of AES in these works,
we calculated the presented results for TNT-AES.

For latency, selecting and XOR-ing bits of tweak can be implemented in the
same clock cycles for AddRoundKey and SubBytes, thus cost no additional cycles.
The additional cycle-cost comes from the fact that TNT-AES has more rounds
and the last round is complete instead of missing the MixColumns. Thus, to
estimate the latency of TNT-AES, we use the clock cycles taken by one full round
of AES (denoted by Cyclesround), times the total number of rounds (n1+n2+n3),
plus the cycles taken by the last AddRoundKey (128/δ cycles), i.e., Cyclesround×
(n1+n2+n3)+128/δ, where Cyclesround is listed in Table 5 (column 8 for AES).

From Table 5, when the tweak has to be stored locally, the hardware perfor-
mance of TNT-AES is slightly inferior to those of SKINNY-128-256 and Deoxys-
BC-256, otherwise, the hardware performance of TNT-AES can be superior.
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Comparison to TAES. Here, we briefly discuss the comparison between the per-
formance of TNT-AES and that of TAES, where TAES is an AES-based TBC
used to instantiate ZOCB and ZOTR that are two tweakable blockcipher modes
for authenticated encryption with full absorption [3]. TAES tweaks AES-256 by
simply replacing the second half part of the secrete key with 128-bit tweak and
keeping all other operations and parameters unchanged. Thus, it has 14 rounds,
128-bit blocks, 128-bit keys, and 128-bit tweaks.

Because TNT-AES consists of 18 AES-rounds, i.e., 4 more rounds than TAES,
under the use-cases where both the key and the tweak are fixed and all sub-
tweaks/sub-keys can be precomputed, TAES outperforms TNT-AES. Whereas,
for other use-cases where retweaking is necessary, TNT-AES is expected to per-
form better. The reasons are as follows. TNT-AES has no tweak-schedule, while
that for TAES is related to the key-schedule for AES-256. For software imple-
mentation using AES-NI, the instruction for one-round encryption outperforms
that for the key-schedule as mentioned above. Thus, in retweaking use-cases,
TNT-AES will be much faster than TAES. For hardware implementation, when
the 128-bit tweak can be stored in external storage, TNT-AES does not need
additional storage to process the tweak. The area requirement is hence much
less than that of TAES, which requires local storage to hold and process the
tweak.

6 Conclusion and Open Questions

In this paper, we proposed a new mode named TNT for constructing tweak-
able block ciphers with proven BBB security based on three block ciphers. To
demonstrate the effectiveness of the mode, an instantiation based on AES named
TNT-AES was proposed, which enjoys the long-standing security of AES, fast
software performance due to AES new instructions, and hardware efficiency due
to the simplicity of TNT mode. Following the prove-then-prune design strat-
egy, we reduced the number of rounds of the three underlying AES-based block
ciphers from 10 for the original AES, to 6, 6, and 6, respectively. Our comprehen-
sive cryptanalysis shows no security issues against TNT-AES, while the reduced
number of rounds allow achieving competitive software and hardware perfor-
mances with existing TBCs designed through modular methods. We expect TNT
to be a generic way to turn a block cipher into a tweakable block cipher securely,
especially for those lightweight block ciphers with smaller block lengths.

Potential Applications. While TNT-AES only supports n-bit tweaks which
seems a limitation compared to CLRW22, such a parameter has already been suf-
ficient for many important applications. For example, many TBC-based MACs,
including the chaining-via-tweak mode proposed by Liskov et al. [54] (its secu-
rity was later proved optimal by Landecker et al. [51]) and the AXU-hash-based
MACs proposed by Cogliati et al. [19], are exactly built from TBCs with n-bit
tweaks, and thus instantiating the TBCs with CLRW22 (as done in [51]) clearly
wastes power and causes unnecessary efficiency loss. Consequently, TNT-AES
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would probably be a better building block. Moreover, TNT-AES could also be
used to build BBB secure variable length domain extenders via the construc-
tion of Chen et al. [13] or double-length block cipher via the construction of
Coron et al. [21]. As discussed in [13], such construction may further motivate
highly secure format-preserving encryption schemes might be a very valuable
alternative to the recently broken standards.

Besides, TNT-AES could be used to replace the TBC module in the stan-
dard OCB3 mode and the OTR mode [62] (the 2nd round candidate during
CAESAR competition). Both modes are optimally secure when the underlying
TBC-module is optimal [49,62] but fall down to the birthday bound due to
instantiating the TBC with XEX-like constructions [67]. Therefore, once instan-
tiating with TNT-AES, we obtain corresponding variants secure against BBB
22n/3 queries in both cases. Consider the application to OCB3 for concreteness.
The resulting AE TNT-AES-ΘCB is a ΘCB instance [49] with TNT-AES being
its underlying TBC, and the security is boosted from n/2 bits of OCB3 to 2n/3
bits. Perhaps surprisingly, the hardware efficiency might be improved as well:
the original OCB3 mode requires to store an AXU hash key EK(0) during the
lifetime of the master key K, which is avoided in TNT-AES-TAE.

We anticipate more such applications, especially when AES-based TBCs are
used and constructed from other modes than TNT.

The Security Gap. Although the security of TNT is proven to be 22n/3, there
is no matching attack – note that Dinur et al.’s attack strategy [26] against the
3-round Even-Mansour ciphers does not help here since the permutations in TNT
cannot be queried by the adversary, and Mennink’s distinguisher [59] does not
work directly either due to the 23n/2 offline computational complexity besides
the 23n/4 online query complexity. Then, the same applies to the instantiation
TNT-AES. It will be interesting to see the closure of this gap, by either improving
the proven security bound or finding a better attack. We leave this as an open
problem to the community.
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A Subspace Trail Cryptanalysis of TNT-AES

In this section, we discuss subspace-trail-based distinguishers and key-recovery
attacks on TNT-AES under the activity pattern (0, 1, 1). Attacking encryption
under the pattern (1, 1, 0) can be seen as attacking decryption with the pattern
(0, 1, 1). Thus, similar attacks under the pattern (1, 1, 0) can be devised once
attacks under the pattern (0, 1, 1) are established. Subspace trail cryptanalysis
of TNT-AES under the activity pattern (0, 1, 1) can be compared with subspace
trail cryptanalysis of (n2 + n3)-round AES. The difference lies in that the initial
coset of concerned subspace is formed by chosen tweaks instead of by chosen
plaintext and elements in the coset will be XOR-ed with the internal state (an
unknown constant) c∗ which can not be observed during the attack. Besides, the
same chosen tweaks are XOR-ed after π2.

As introduced in Sect. 5.2, a series of attacks on round-reduced (no more than
6 rounds) AES based on subspace trail cryptanalysis and the extended mixture-
differential, exchange attacks were proposed in [4–6,31–34]. Among these r-round
distinguishers, those which do not require the knowledge of part of the secret
key can be directly turned into (n1 + r)-round distinguishers with the same
complexity on round-reduced TNT-AES. This can be done by using a unique
plaintext p and a structure of tweaks to construct required cosets of concerned
subspace at the beginning of π2. Although the exact cosets are unknown, required
relations among input states at the beginning of the active permutation can be
constructed using chosen tweaks. For example, when turn the 4-round mixture-
differential distinguisher on AES [4,30] into an (n1 + 4)-round distinguisher on
TNT-AES, if some chosen tweaks can form mixture quadruples, then after being
XOR-ed with a common unknown internal state, the resulting states still keep
the relation of being mixture quadruples. There are r-round distinguishers on
round-reduced AES that require considering part of the key, which can also
be turned into (n1 + r)-round distinguisher on TNT-AES. Take the 5-round
impossible-differential distinguishers based on the impossible subspace trail on
4-round AES [33] for example. When we turn it into (n1+5)-round distinguisher
on TNT-AES, we use a unique plaintext p and structures of chosen tweaks (chosen
in the way of choosing plaintexts in the original distinguisher). Then, unlike in
the original distinguisher on AES, where we guess the single-byte key difference
k0,0⊕k1,1, we guess the single-byte difference c∗

0,0⊕c∗
1,1, where c∗ is the unknown

internal state before XOR-ing the tweak. Again, the complexities of these (n1 +
r)-round distinguishers on TNT-AES will be almost the same with those r-round
distinguishers on AES.
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As for key-recovery attacks exploiting those r-round distinguishers on round-
reduced AES (e.g., the 5-round key-recovery attack exploiting the 4-round
mixture-differential distinguisher [4] and the 6-round key-recovery attack exploit-
ing the 5-round probabilistic mixture-differential distinguisher [30]), they add
one round in front of the distinguisher, and guess parts of the whitening key
(e.g., key bits in SR−1(Col(i)), or say in diagonal space Di, i ∈ {0, 1, 2, 3}) to
filter out useful plaintexts from a chosen structure or to classify chosen plaintexts
into properly defined sets. Such attacks may not be directly used to construct
corresponding attacks on (n1 + 1 + r)-round TNT-AES by guessing part of the
subkey, because the internal state is also unknown. However, by guessing the
internal state before XOR-ing the tweak, we can recover this unknown state
part by part (instead of recovering key bits). Using this recovered internal state,
one may further analyze π1 to recover the key. However, because the depen-
dent unknown values are in the diagonal SR−1(Col(i)) that depend on the full
state one round before, extending such attacks to cover one more round seems
to be difficult. Thus, exploiting current techniques in such attacks on r-round
AES-128, an attack on TNT-AES is limited to be no more than (n1 + 1 + r)
rounds. Key-recovery attacks using those (n1 + r)-round (r ≥ 5) distinguishers
to recovery the subkey in an appended (complete) round seems also very hard.
That is because, the considered cosets at the end of the exploited distinguishers
are commonly cosets of mixed space MI (I ⊆ {0, 1, 2, 3}), which are mapped
into the full state. Thus, in an (n1 + r + 1)-round (r ≥ 5) key-recovery attack,
checking the distinguishable properties one round before the last round requires
guessing the entire key.

Based on these analyses and together with previous analyses of other activity
patterns, we believe TNT-AES is strong enough to resist subspace trail attacks.

B Examples of the Related-Tweak Boomerang
Distinguishers of TNT-AES
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