
Speeding Up the Search Algorithm for the Best
Differential and Best Linear Trails

Zhenzhen Bao(B), Wentao Zhang, and Dongdai Lin

State Key Laboratory of Information Security, Institute of Information Engineering,
Chinese Academy of Sciences, Beijing, China

{baozhenzhen,zhangwentao,ddlin}@iie.ac.cn

Abstract. For judging the resistance of a block cipher to differential
cryptanalysis or linear cryptanalysis it is necessary to establish an upper
bound on the probability of the best differential or the bias of the best
linear approximation. However, getting a tight upper bound is not a triv-
ial problem. We attempt it by searching for the best differential and the
best linear trails, which is a challenging task in itself. Based on some
previous works, new strategies are proposed to speed up the search algo-
rithm, which are called starting from the narrowest point, concretizing
and grouping search patterns, and trialling in minimal changes order
strategies. The efficiency of the resulting improved algorithms allows us
to state that the probability (bias) of the best 4-round differential (linear)
trail in NOEKEON is 2−51 (2−25) and the probability (bias) of the best
10-round (11-round) differential (linear) trail is at most 2−131 (2−71). For
SPONGENT, the best differential trails for certain number of rounds in
the permutation functions with width b ∈ {88, 136, 176, 240} are found.
That allows us to update some results presented by its designers.

Keywords: Differential cryptanalysis · Linear cryptanalysis · Differen-
tial trail · Linear trail · Search algorithm · Optimization · NOEKEON ·
SPONGENT

1 Introduction

Differential cryptanalysis (DC) [1] and linear cryptanalysis (LC) [2] are two of
the most powerful attacks against modern block ciphers in which an adversary
exploits good differentials or good linear approximations. The first step in a
differential or a linear attack consists in finding differentials or linear approx-
imations of the cipher with probabilities or bias as high as possible. In most
cases, differential trails with highest probability and linear approximation trails
with largest bias can be used to estimate the power of the corresponding attack.
Differential (linear) trails consist of a sequence of differences (approximations)
through the rounds of the primitive and those with the highest probability (the
largest bias) are called the best. However, the problem of searching best trails
is not trivial, because of the great cardinality of the set of candidates [3,4].

c© Springer International Publishing Switzerland 2015
D. Lin et al. (Eds.): Inscrypt 2014, LNCS 8957, pp. 259–285, 2015.
DOI: 10.1007/978-3-319-16745-9 15

260 Z. Bao et al.

For many block ciphers, such as AES, NOEKEON and PRESENT, researchers
prefer counting the minimal number of active S-Boxes to get the upper bound of
the best probability (bias) of differential (linear) trails [5–8]. In this method, con-
cepts such as branch number and structures of the linear layer are used. Further-
more, tools using MILP are developed [9]. However, those approaches could only
provide a kind of differential trails without the instantiated actual differences or
without the knowledge of exact probabilities of those trails. Remarkably, authors
of [10] use a variant of Dijkstra’s algorithm which is essentially a breadth-first
search to efficiently find all best truncated differential trails with minimal num-
ber of active S-Boxes and instantiate them with actual differences. This method
is very powerful, however, on one hand, it may fail to find the best differential
trail which does not have the minimal number of active S-Boxes, and on the other
hand it is powerless in the case of bit-oriented ciphers. Specifically, although this
breadth-first approach is in polynomial time in the number of rounds, it is expo-
nential in the state. Thus, for ciphers using large number of small S-Boxes, which
is typically 4 bits wide, and have weak alignment, an intermediate state tends to
large, and a PC cannot store all the intermediate state, that is, we cannot choose a
breadth-first strategy. Thus, we seek for depth-first method to find the best trails.

In 1994, Matsui proposed a branch-and-bound depth-first search algorithm
making it possible to effectively find the best differential trails and linear approx-
imation trails of DES [11]. Unfortunately, his method is not fast enough for some
other cryptosystems like FEAL. Consequently, improvements on Matsui’s algo-
rithm were studied by Moriai et al. [3] and Aoki et al. [12]. The work in [3] was
based on analyzing the dominant factor of search complexity and it introduced
the concept of search patterns in order to reduce unnecessary search candidates.
The authors successfully obtained new results on best linear approximations for
FEAL by applying the proposed search algorithm. In [12], Aoki et al. further
optimized the search algorithm. They presented good results of the search for
the best differential trails of FEAL using a pre-search strategy.

Recently, automatic tools for searching for differential trails in ARX ciphers
are relatively mature [13,14]. One of them [14] is also extended from Matsui’s
algorithm. However, due to the fact that it uses a partial, rather than the full
DDT, their algorithm is not guaranteed to find the best differential trail. To the
best of our knowledge, there is no application of those tools which are designed
for ARX ciphers to Sbox-based ciphers.

For modern Sbox-based ciphers, expanding block size and good diffusion
cause the probabilities of the best trails of very short rounds to be tiny. Generally,
the smaller the probability of a best trail, the longer the time of a search will
be. The heuristic search algorithm described in [4] might be helpful, but could
hardly satisfy the cryptographers to fully estimate the vulnerability of a modern
cipher to DC and LC. For designers who need to repeatedly apply the search
algorithm to their draft ciphers to choose the best possible components and to
decide a proper number of rounds, and for attackers who want to obtain large
sets of trails with probabilities as high as possible and with rounds as many as
possible, it is profitable to further optimize the search algorithm.

Speeding Up the Search Algorithm for the Best Trails 261

In this paper, we focus on this problem and aim to speed up the depth-first
search algorithm for the best actual differential and linear trails.

The target objects are of Sbox-based iterated block cipher [5] in which all
intermediate rounds use the same round transformation. We only consider those
iterated ciphers with round keys being added to the state by means of XOR
operation which is very common in modern block ciphers.

1.1 Our Contributions

We present three new optimization strategies to speed up the search algorithm
for the best trails, which are called starting from the narrowest point, concretizing
and grouping search patterns, and trialling in minimal changes order strategies.

– Starting from the narrowest point is very helpful to reduce complexity to a
great extent by raising the threshold to the candidates at the earliest phases
of the search procedure and maximizing shareable work at those phases.

– Concretizing and grouping search patterns further maximizes the scope of
shared works and collects more information on search patterns to filter out
invalid ones, while keeping the memory requirement appropriate.

– Trialling in minimal changes order utilizes the locality of the nonlinear layer
and the linearity of the linear layer, to tame the brute force search to behave
in a systematical and efficient manner.

Experimental results show that, the first two strategies bring a speed up by a
factor of around 740–2800, which can be seen in Table 2. Considering the profit
brought by the third strategy, the resulting improved algorithm has around 1500–
5000 speedup ratio for the experimental subject.

Our final improved algorithm has been applied to search for the best dif-
ferential and best linear trails in a block cipher named NOEKEON which was
designed by Joan Daemen et al. [6]. The efficiency of the improved algorithm
allows us to find out the best trails, thus to state that probability (bias) of the
best 4-round differential (linear) trail in NOEKEON is 2−51 (2−25). Additionally,
probability (bias) of the best 5-round and 6-round trails are ≤2−65 (≤2−32) and
≤2−80 (= 2−40) respectively. That allows us to claim that the probability (bias)
of the best 10-round (11-round) differential (linear) trail in NOEKEON is at most
2−131 (2−71). The results are summarized in Table 3. Besides, we found out the
longest linear trail holding with bias larger then 2−65, which is a 9-round trail
with bias 2−62. These improved positive results contribute to the estimation of
the security of NOEKEON against differential (linear) cryptanalysis.

We have also used this final improved algorithm to search for the best differ-
ential trails in the permutation functions of SPONGENT, a hash function. We
found out the best differential trails for variants with width b ∈ {88, 136, 176, 240}
for certain number of rounds, and update some results presented by its designers
in [16]. Some of the results are summarized in Table 4.

These strategies are also useful for us to search for the best differential and
best linear trails for other primitives and helpful to search for best multiple
differential (multi-dimensional linear) distinguishers.

262 Z. Bao et al.

By the way, all of the experiments and results in this paper are timed and
obtained on a PC with Intel(R) Core(TM) i5-4570S 2.90 GHz CPU, and 4 GB
RAM, using single-thread program in C.

1.2 Organization

The paper is organized as follows. Some preliminaries and symbolic conventions
are presented in Sect. 2. In Sect. 3, we introduce and briefly discuss three previous
works including Matsui’s algorithm, Moriai et al.’s algorithm and Aoki et al.’s
algorithm. Section 4 establishes our overall strategies and basic principles. The
three optimization strategies starting from the narrowest point, concretizing and
grouping search patterns and trialling in minimal changes order are covered
in Sects. 5–7, which provide the justification and experimental results on the
efficiency. Finally, new results on best trails in a block cipher NOEKEON and in
the permutation functions of a hash function SPONGENT are shown in Sect. 8.
In Sect. 9, we conclude our algorithm and prospect for further improvement.

2 Notations and Preliminaries

For convenience, we will explain the optimization strategies with SPN ciphers
with non-linear layer being a parallel execution of 4 × 4 - S-Boxes in our mind.
While, proposed strategies are also applicable to ciphers of Feistel structure and
with larger S-Boxes.

Because of the duality between the search for the best differential trails and
the search for the best linear trails [11], we will explain the optimization strate-
gies from the perspective of differential.

A more natural way will be used to characterize the power of trails - the
weight of differential trail which is the sum of the weight of round differentials,
where the latter is the negative of its binary logarithm of its probability [15,
Chap. 5].

idr: the input difference of the r-th round differential1

odr: the output difference of the r-th round differential
pr: the probability of the r-th round differential
wr: the weight of the r-th round differential, wr = − log2 pr

w(idr,odr): the weight of the r-th round differential (idr, odr)
wr: the weight of a r-round differential trail, wr =

∑r
i=1 wi, where wi is the

weight of the i-th round differential composing that r-round differential trail
Bwr: the weight of the best r-round differential trail
Bwcr: the candidate of Bwr

ASN: the abbreviation of Number of Active S-Boxes
asnr: ASN at the S-Layer of the r-th round2

1 We index the rounds begin with 1, i.e. 1 ≤ r ≤ n, where n is the number of rounds
of a block cipher.

2 When using the starting from the narrowest point strategy, we index the rounds
relatively to the narrowest point.

Speeding Up the Search Algorithm for the Best Trails 263

3 Previous Works

3.1 Matsui’s Algorithm

Matsui’s algorithm [11] works by induction on the number of rounds n and
derives the best n-round weight Bwn from the knowledge of all best r-round
weight Bwr (1 ≤ r ≤ n − 1). The original search algorithm targets DES. Here,
we summarize Matsui’s algorithm for SPN ciphers. The framework consists of
the recursive procedures described in Algorithm 1. In Algorithm 1, Bwcn holds
the temporary approximation of the value of Bwn. It is an upper bound of Bwn

and improved in a decreasing manner during the search bounded by conditions∑r
i=1 wi +Bwn−r ≤ Bwcn (1 ≤ r ≤ n− 1). When all of the possible paths have

been traversed, Bwcn turns to be the exact value of Bwn.

Algorithm 1. Matsui’s Algorithm

1: Bwcn ← an upper bound of Bwn

2: procedure Round-1

3: for all candidate of od1 do

4: w1 ← minid1 (w(id1,od1))

5: if w1 + Bwn−1 ≤ Bwcn then

6: Round-i(2)

7: end if

8: end for

9: Exit the program

10: end procedure

11: procedure Round-i(r) (2 ≤ r ≤ n)

12: idr ← odr−1

13: if r < n then

14: for all candidate of odr do

15: wr ← w(idr,odr)

16: if
∑r

i=1 wi+Bwn−r ≤ Bwcn then

17: Round-i(r + 1)

18: end if

19: end for

20: else

21: wn ← minodn (w(idn,odn))

22: if
∑n

i=1 wi < Bwcn then

23: Bwcn ←∑n
i=1 wi

24: end if

25: end if

26: end procedure

3.2 Moriai et al.’s Algorithm

Moriai et al.’s program [3] is based on Matsui’s algorithm. The concept of search
patterns was introduced to detecting the unnecessary and impossible search can-
didates.

Definition 1 (Search Pattern [3]). An n-round search pattern used in the
search for the best differential trail is a vector of n values of weights, which
is denoted as W

n = (w1, w2, . . . , wn), where wi is the weight of the i-th round
differential (1 ≤ i ≤ n). Let |Wn| ≡ ∑n

i=1 wi.

Given n and Bwcn which is a lower bound of Bwn, their algorithm first gener-
ates all possible patterns3 using Bwr (1 ≤ r ≤ n− 1). It then examines whether
there is a differential trail fitting one of the patterns. If none of the patterns has
a real trail, another candidate for Bwn is similarly trialled. Their algorithm is
summarized as Algorithm 2. There are two improvements in Algorithm2 com-
pared with Algorithm1. As for the first improvement, knowledge of all weights
3 For simplicity, we sometimes address search patterns with the term patterns.

264 Z. Bao et al.

of best r-round trails is more sufficiently used by observing that ∀r, i (1 ≤ r ≤
n − 1, 1 ≤ i ≤ n − r + 1),

∑i+r−1
j=i wj ≥ Bwr. Thus it can delete more non-

existent candidates. As for the second improvement which targets involutory
ciphers, concept of search patterns is used and patterns are classified into two
equivalent classes, the class which has more candidates is deleted and thus it can
delete duplicate candidates and reduce the computation complexity.

Algorithm 2. Moriai et al.’s Algorithm
1: Bwcn ← a lower bound of Bwn

2: while true do
3: Generate all search patterns (w1, w2, . . . , wn) which make the following hold:

1.
∑n−r

i=1 wi + Bwr ≤ Bwcn, for 1 ≤ r ≤ n − 1

2. ∀r, i (1 ≤ r ≤ n − 1, 1 ≤ i ≤ n − r + 1),
∑i+r−1

j=i wj ≥ Bwr.
4: Discard either search pattern (w1, w2, . . . , wn) or (wn, wn−1, . . . , w1) whichever

has more search candidates.
5: Search the differential trails corresponding to the search patterns as Algorithm 1

with all the inequalities replaced by equalities.
6: if find out a trail then Bwn ← Bwcn and Exit
7: end if
8: Bwcn ← Bwcn + 1
9: end while

3.3 Aoki et al.’s Algorithm

In Algorithm 2 restrictions are merely based on weights of the best, while pat-
terns of the best and patterns of r-round trails which are not the best cannot be
used. Aoki et al.’s [12] considered the patterns themselves. They checked about
the existence of the combined patterns using information about search patterns
of differential trails with various weights by a pre-search strategy. Their algo-
rithm is summarized as Algorithm 3.

Algorithm 3. Aoki et al.’s Algorithm
1: procedure Pre-Search

2: Search r-round (r < n) differential trails with various weights, and compile
information to the extent possible whether or not the search pattern exist for each
round and weight.

3: end procedure
4: procedure Search

5: Do as Algorithm 2, but discard the search patterns which do not exist using the
information from the pre-search phase.

6: end procedure

Speeding Up the Search Algorithm for the Best Trails 265

4 Overall Strategy and Basic Principle in Our Work

Based on the three previous works, our program works by inducting on the num-
ber of rounds n, using concept of the search patterns and doing pre-search. For
n-round cipher, wn is initialized with a lower bound of Bwn and it is increased by
an unit until exceeding the range of weight we considered. During this procedure,
Bwn is determined when the first time an n-round differential trail being found
out. For each temporary value of wn, we generate the corresponding search pat-
tern set using Bwr (1 ≤ r ≤ n− 1) as in Algorithm 2 and using the information
about existence of r-round (1 ≤ r ≤ n − 1) search patterns collected during the
preceding search phases. Within each search pattern set, the search traverses
in a depth first manner. In AppendixA, framework of our search approach is
shown in Algorithm 4. Algorithms 5–8 formalize the search procedure deploying
the starting from the narrowest point, concretizing and grouping search patterns,
and trialling in minimal changes order strategies which will be explained in the
following Sects. 5–7.

5 Starting from the Narrowest Point Strategy

It has been shown in [3] that for Feistel ciphers the complexity of search for the
best n-round trails is dominated by the number of candidates in procedures of
the first two rounds. Similarly, for SPN ciphers, we found that the complexity
of search is dominated by the number of candidates of the first two rounds (i.e.,
the first two layers in the depth-first search procedure). Generally, the number
of candidates of the first two rounds greatly depends on the weight of the first
round, the smaller the weight, the less the number of candidates. Thus, reducing
the number of candidates at the first two layers will be much helpful. In this
section, we propose our first strategy, i.e., starting from the narrowest point
strategy. By using this strategy, the number of candidates at the first two layers
can be reduced greatly.

5.1 Proposal and Justification of the Starting from the Narrowest
Point Strategy

We organize the search patterns using a kind of balance trees, with roots starting
from the narrowest point instead of the first point of the search patterns, see
Definition 2 and Example 1 for clarify.

Definition 2 (Narrowest Point and Relative-Index Form). Given an n-
round search pattern W

n = (w1, w2, . . . , wn), suppose there are k minimal com-
ponents wx1 , wx2 , . . . , wxk

, i.e. wxi
= wmin ≡ min(w1, w2, . . . , wn) for 1 ≤ i ≤ k.

Let nxt(x) ≡
{

x + 1 1 ≤ x ≤ n − 1

n − 1 x = n
, and vmin ≡ min(wnxt(x1), wnxt(x2), . . . , wnxt(xk)

).

Suppose wm is the first component of W
n which satisfies wm = wmin and

wnxt(m) = vmin, we call the index m the narrowest point, and say wm lies

266 Z. Bao et al.

at the narrowest point of W
n. If we index each component wx of W

n with
the relative distance between x and m (i.e., x − m), W

n can be rewritten as
W̆

n = (w̆−m+1, . . . , w̆−1, w̆0, w̆1, . . . , w̆n−m), where w̆x−m = wx. We call W̆n the
relative-index form of Wn and define the relative index of wx as rix(wx) =
rix(w̆x−m) = x − m, 1 ≤ x ≤ n.

A search pattern W
n is placed at the search tree in its relative-index form W̆

n

as depicted in Fig. 1.

Example 1. Considering a set of search patterns with |W3| = 30 of 3-round
NOEKEON: S ={ (2, 14, 14), (14, 2, 14), (4, 13, 13), (13, 4, 13), (6, 11, 13), (13,
6, 11), (6, 12, 12), (12, 6, 12) }, Fig. 2 depicts two ways to organize the search
patterns in S. In Fig. 2a, search patterns in S are organized from the first point,
and they are organized from the narrowest point in Fig. 2b.

There are three main reasons why starting from the narrowest point strategy can
help to greatly reduce the search complexity:

Fig. 1. Placing a search pattern at the search tree in its relative-index form

20

141

142

40

131

132

60

121

122

111

132

120

61

122

130

61

112

41

132

140

21

142

(a) Organizing from the first points(in-
dex components relative to the round-
index of the first component)

20

141

14−1142

40

131

13−1132

60

121

12−1122

111

13−1132

(b) Organizing from the narrowest points
(index components relative to the round-
index of the narrowest point)

Fig. 2. Organizing the search patterns in Example 1 in two ways. Nodes in trees are
elements representing one-round weights in search patterns. The subscript in each node
represent the index of the point relative to the starting point.

Speeding Up the Search Algorithm for the Best Trails 267

1. Firstly, the range of the minimal value in a search pattern set is narrower
than the range of an arbitrary value. In general, the range of the allowed
minimal value which composes a sum is narrower than the range of the allowed
arbitrary value. Here is a simple example. Assume we need to partition 11 to 4
positive numbers x1, x2, x3, x4, then the smallest number must equal to 1 or 2,
while x1 can be any number between 1 and 8. In our situation, take Example 1
again, for the search pattern set with |W3| = 30 of 3-round NOEKEON, set
of values at the narrowest point is {2, 4, 6}, while set of values at the first
point is {2, 4, 6, 12, 13, 14}. By organizing search patterns from the narrowest
points, more nodes and longer prefix-paths can be shared. From Fig. 2 we can
deduce that sharing is maximized among search patterns by organizing from
the narrowest point:
– There are only 7 nodes at the first two layers of the latter structure Fig. 2b,

while 14 nodes at that of the former Fig. 2a.
– More patterns can share search prefix-pathes in the latter structure Fig. 2b

than in the former Fig. 2a.
2. The second reason which makes the starting from the narrowest point strategy

work better is that the smaller the weight, the less the number of candidate
round differentials. For most block ciphers, the number of candidate round
differentials with larger weight is much more than that with smaller weight.
That is because, for a single S-Box, take the 4×4-bit S-Box of NOEKEON for
example, the number of differential pairs with weight 3 is 72 while the number
of differential pairs with weight 2 is only 24. Moreover, round differentials with
smaller weight usually have less active S-Boxes. In the starting round, the
less the number of active S-Boxes, the less the number of candidate round
differentials. Table 1 shows the explosive increase of number of one-round
candidates with the increase of one-round weight.

3. The third reason is that by starting from the narrowest point, restriction
are more stringent, backtracking in invalid path could arise early. This dues
to the diffusion property within small number of rounds of the cipher. Take
NOEKEON for example and limit the number of active S-Boxes of one round
being less than 18, if the preceding round is with one active S-Box, there are
12 trails4 propagating through the succeeding round, and if the preceding
round is with two active S-Boxes, there are 981 trails. The number of trails
that could propagate through the succeeding round increase explosively with
the increase of the number of active S-Boxes in the preceding round, which
can be seen in [6, Appendix A]. Combining with the fact that number of dif-
ferential pairs with weight 3 is much more than that with weight 2 for active
S-Boxes, smaller weight of the preceding round leads a narrower range of
possible value of weight of the succeeding round, and less number of differen-
tial trails which could propagate through the succeeding rounds. Accordingly,
for a given search pattern, if the search procedure starts from the narrow-
est point, there is much less candidate differential trails within the starting

4 The number is up to rotation equivalence for NOEKEON.

268 Z. Bao et al.

two rounds and to search in the search patterns which do not exist in real-
ity, the workload taken by the search procedure before it being blocked at
some nodes in search trees will be much smaller than that of starting from
an arbitrary point.

Table 1. Numbers of candidates for one-round differential under various weight

w1 2 3 4 5

CN 24 72

(
32

2

)

× 242

(
32

2

)

× 2 × 24 × 72

≈24.58 ≈26.17 ≈218.12 ≈220.71

w1 6 7 8 9

CN

(
32

2

)

× 722

+

(
32

3

)

× 243

(
32

3

)

×3×242 ×72

(
32

3

)

× 3 × 24 × 722

+

(
32

4

)

× 244

(
32

3

)

× 723

+

(
32

4

)

× 4 × 72

× 243

≈226.08 ≈229.20 ≈233.68 ≈237.08

CN : Numbers of one-round candidates.

Suppose there are 32 identical 4 × 4-bit S-Boxes in one round of the cipher and we ignore the

rotation equivalence.

Suppose number of differential pairs with weight 3 is 72 and that with weight 2 is 24 in the

DDT of an S-Box.

5.2 Experimental Results of Starting from the Narrowest Point
Strategy

Table 2 includes the experimental results comparison between search with the
starting from the narrowest point strategy and search without the strategy. It can
be seen that hundreds of speed up ratio are reached by adopting the starting
from the narrowest point strategy from column “Time-First”, column “Time-
Narrowest” and column “Ratio-(F/N)”.

At the end of this section, we would like to point out the following.
When the starting point is the first round, it is sufficient to test only one of

the input difference compatible with each output difference under the first round
weight. Similarly, it is sufficient to test whether there exist one output difference
compatible with the input difference under the weight of the last round. We call
this the free ends equivalent effect.

When the narrowest point is internal round, free ends equivalent effect should
also be considered. There are both forward and backward propagations in branches
of search trees. For the last round of the forward propagation and last round of the
backward propagation, which are the real last round and the first round of the
current n-round cipher respectively, it is sufficient to test only one of the output
differences compatible with the input difference. Besides, similar with the above
discussed free ends equivalent effect, there is a starting point equivalence. Specifi-
cally, when output difference of the starting round is fixed, there are many input

Speeding Up the Search Algorithm for the Best Trails 269

differences of this round compatible with it. However, forward branches need to be
traversed under only one of the compatible input differences of the starting round
instead of all.

6 Concretizing and Grouping Search Patterns Strategy

It has been proved experimentally that the pre-search strategy is very power-
ful to filter out non-existent search patterns. However, as containers of results
of pre-search, search patterns turn to be too abstract to store enough informa-
tion on the underlying trails. To collect more information from preceding search
phases, search patterns should be concretized to a proper extent while keep-
ing the storage requirement appropriate. Thus, we propose the concretizing and
grouping search patterns strategy. Besides, starting point equivalence can exist
among various weights of narrowest point. That equivalence should be further
considered to maximize shareable works at early phases of the procedure which
dominate the search complexity.

6.1 Proposal and Justification of the Concretizing and Grouping
Search Patterns Strategy

Concretizing: First, we append information of possible number of active S-
Boxes at the narrowest point to each search pattern. Thus, a search pat-
tern turns to be several concretized search patterns. For a search pattern
W

n = (w1, . . . , wm, . . . , wn) and its relative-index form W̆
n = (w̆−m+1, . . . ,

w̆0, . . . , w̆n−m), its concretized search patterns are {W̆n} = {(w̆−m+1, . . . ,(
[asn]
w̆0

)

, . . . , w̆n−m)|asn ∈ [asn min, asn max]}where[asn min, asn max]

is the range of possible ASN of round-differential at the narrowest round with
round-weight w̆0.

Grouping: We then group the concretized search patterns according to the
number of active S-Boxes at the narrowest point. For two search patterns
having same possible ASN at the narrowest point:
1. W

n
1 = (w1,1, . . . , w1,m1 , . . . , w1,n) and its relative-index form

W̆
n
1 = (w̆1,−m1+1, . . . , w̆1,0, . . . , w̆1,n−m1), and one of its concretized pat-

tern

W̆n
1 = (w̆1,−m1+1, . . . ,

(
[asn]
w̆1,0

)

, . . . , w̆1,n−m1)

2. W
n
2 = (w2,1, . . . , w2,m2 , . . . , w2,n) and its relative-index form

W̆
n
2 = (w̆2,−m2+1, . . . , w̆2,0, . . . , w̆2,n−m2), and one of its concretized pat-

tern

W̆n
2 = (w̆2,−m2+1, . . . ,

(
[asn]
w̆2,0

)

, . . . , w̆2,n−m2),

270 Z. Bao et al.

Figure 3a depicts the way how we concretize the search patterns by an exam-
ple set of search patterns with |W3| = 35 of 3-round NOEKEON. Figure 3b
depicts the way how we group the search patterns by the same example set of
search patterns taken in Fig. 3a.

Then the search is processed group by group, instead of value by value of
weight starting from the narrowest point. Grouping search patterns in such a
way can bring two advantages.

1. Firstly, more specified knowledge of the search patterns will be learned during
the pre-search phase. Information on allowed number of active S-Boxes at the
narrowest point of a search pattern are stored in memory and can be used to
filter search patterns in later process. For example, in Fig. 3b, search pattern
(16, 6, 13) is included in the tree with [3]5 as the root node. Since a round
differential with weight 6 is possible to have 2 active S-Boxes, (16, 6, 13) should
have been included in the tree with [2] as the root node as well. However,
during the former search of 2-round cipher, we learn that search pattern
(6, 13) does not exist when round differential with weight 6 has 2 active
S-Boxes. Thus, (16, 6, 13) can be deleted in the tree with [2] as the root.
Besides, since the allowed number of active S-Boxes at the narrowest point
are usually small, memory requirement stays appropriate.

2. Secondly, once the search patterns are grouped according to the allowed
number of active S-Boxes and starting from the output difference in the
narrowest point, searches can share the forward propagation prefixes among
different search patterns with various narrowest point weight. For example,
in Fig. 3b search pattern (13, 9, 13), (14, 8, 13), (15, 7, 13) and (16, 6, 13) share
the same prefix ([3], 131) when we search starting from an output difference
with 3 active S-Boxes at the narrowest point.

5 For simplicity, we use the number in square bracket to represent the root node (eg.

[3] is the shortening of

(
[3]

{6, 7, 8, 9}0

)

).

Speeding Up the Search Algorithm for the Best Trails 271

(
[2]
40

)

141

17−1

131

18−1

(
[2]
50

)

141

16−1

131

17−1

(
[2]
60

)

141

15−1

131

16−1

(
[3]
60

)

141

15−1

131

16−1

(
[3]
70

)

141

14−1

131

15−1

(
[3]
80

)

131

14−1

(
[4]
80

)

131

14−1

(
[3]
90

)

131

13−1

(
[4]
90

)

131

13−1

(a) Concretizing search patterns by appending information of possible number of active
S-Boxes at the narrowest point

(
[2]

{4,5,6}0

)

14{4,5,6}
1

17{4}
−116{5}

−115{6}
−1

13{4,5}
1

18{4}
−117{5}

−1

(
[3]

{6,7,8,9}0

)

14{6,7}
1

15{6}
−114{7}

−1

13{6,7,8,9}
1

16{6}
−115{7}

−114{8}
−113{9}

−1

(
[4]

{8,9}0

)

13{8,9}
1

14{8}
−113{9}

−1

(b) Grouping search patterns by number of active S-Boxes at the narrowest point.
Superscript numbers in brace represent the narrowest point weight of the patterns
in which the node belongs to. For example, search pattern (14,8,13) is included

in the branch with
(

[3]
{6,7,8,9}0

)

as the root node, 13{6,7,8,9}
1 as the first layer node,

and 14{8}
−1 as the leaf. It is also included in the branch with

(
[4]

{8,9}0

)

as the root

node, 13{8,9}
1 as the first layer node,and 14{8}

−1 as the leaf.

Fig. 3. Concretizing and grouping search patterns. Number in square bracket appended
at root node of each tree represents the possible number of active S-Boxes at the nar-
rowest point. Subscripts represent indices of the points relative to the starting points.

6.2 Experimental Results of Concretizing and Grouping Search
Patterns

Table 2 summarizes the experimental results comparison between search with
the concretizing and grouping search patterns strategy and searches without the
strategy. Column “Ratio-(N/C)” shows a tens of times speedup ratio. A hundreds
of speedup ratio are achieved combined with the efficiency brought by the first
strategy shown as in column “Ratio-(F/C)”.

7 Trialling in Minimal Changes Order Strategy

Once the set of search patterns is created, to obtain a differential trail, we only
need to simply generate and concatenate round differentials under fixed round
weights, if there exist any. By looking up the differential distribution table (DDT)
of S-Box in the S-Layers and by executing the P-Layers between continuous
rounds on the differences, round differentials can be constructed and connected
to a differential trial. However, for NOEKEON and SPONGENT, execution of the

272 Z. Bao et al.

Table 2. Experimental results comparison between search starting from the first point
(abbr. as “First” or “F”), search starting from the narrowest point (abbr. as “Narrow-
est” or “N”), and search starting from the narrowest point with the concretizing and
grouping search patterns strategy (abbr. as “Concretize” or “C”)

w3 Time (mins) Ratio

First Narrowest Concretize F/N N/C F/C

28 7.43 0.11 0.01 67.55 11.00 743.00

29 8.01 0.98 0.01 8.17 98.00 801.00

30 375.60 1.10 0.44 341.45 2.50 853.64

31 375.88 1.11 0.45 338.63 2.47 835.29

32 2398.50 15.99 0.85 150.00 18.81 2821.76

33 - 16.65 0.91 - 18.30 -

34 - 16.77 1.08 - 15.53 -

35 - 165.54 1.56 - 106.12 -

36 - 172.82 30.97 - 5.58 -

37 - 177.73 33.70 - 5.27 -

Ratio: Ratio between two kinds of time.
Rows are separated by weight of 3-round trails in NOEKEON.
All of the experiments are done with the trialling in minimal
changes order strategy.
Weight range of pre-search information of 2-round cipher is
[8, 31].

P-Layer will become the most costly part of the search process. That is because
executing the P-Layer by looking up big tables which is a more suitable way of
implementation in the case of searching for differential trails, the cost of P-Layer
can be up to 10 times of the cost of generating a new candidate differential at
the S-Layer. What is more, each replacement of candidate differential in a single
S-Box at the S-Layer, calls for the replacement of differential at the P-Layer in
full scope.

We avoid the full execution of the P-Layer considering that there is locality
of individual S-Box within S-Layer and linearity of P-Layer, which makes local
calculation feasible when generate round differentials. Further more, we propose
the trialling in minimal changes order strategy to minimize the number of local
calculation, thus to minimize the cost of generating round differentials. The
following are explicit explanations.

If we can pre-calculate all 128-bit outputs corresponding to local nonzero
inputs (let us take 4-bit for example hereafter) of P-Layer, we can get the output
differences corresponding to the input differences which is locally active by simple
XOR operations instead of the costly execution of P-Layer. Linear operation
(XOR) on 128-bit (256-bit) data can resorting to the SSE and AVX instructions.

P-Layer operations can be further removed completely by planting the above
4 × 128-bit differences tables of P-Layer to the DDT of S-Box. We call each
128-bit SP-Layer output difference caused by a 4-bit (located at a single S-Box)
S-Layer input difference the “128-bit contribution difference” to the 128-bit

Speeding Up the Search Algorithm for the Best Trails 273

round output difference. We generate table of 4-bit input differences and their
128-bit contribution differences which is called contribution differential distrib-
ution table (CDDT).

To minimize the cost of generating new candidate differences, we gener-
ate the new from the old with minimal local changes by removing and adding
128-bit contribution differences which can be done by looking up the CDDT
and by simple XOR instructions. The following shows how we achieve the least
number of looking up table and XOR instructions.

Candidate round differentials are characterized by the weight patterns of
active S-Boxes and indices of their 4-bit candidate differences within each active
S-Box. By weight patterns of active S-Boxes, we mean the possible compositions
of partition one-round weight into weights of active S-Boxes. Take one-round
differential weight as 10 and number of active S-Boxes as 4 for example, weight
patterns of active S-Boxes are (3322),(2323),(2332),(3223),(3232) and (2233),
which are restricted 4-compositions of 10. We then run through all the candi-
date output differences by enumerate the weight patterns of active S-Boxes with
a light algorithm extended from [17] and run through all the indices within each
weight pattern with an algorithm named “Loopless reflected mixed-radix Gray
generation” in [18] to achieve minimal changes and least XOR operations. Gen-
erally, generating a new candidate only cost two XOR-operations. An example
can be seen in Example 2.

Example 2. Following is an example of trialling in minimal changes order strat-
egy. Assume there are 4 active S-Boxes in the round input difference, and input
differences of the four active S-Boxes are 0x2, 0x1, 0x4 and 0x8. We need to run
through all the compatible round output difference with round weight equals
to 10. To minimize the cost, we try the weight patterns of 4 active S-Boxes
(3322),(2323),(2332),(3223),(3232) and (2233) in an order as show in Fig. 4.
Within a weight pattern, take (2233) for example, assume num(0x2, 2) = 3,
num(0x1, 2) = 2, num(0x4, 3) = 3 and num(0x8, 3) = 2, where num(id, w)
denotes the number of candidate output differences given input difference id
and weight w of a single S-Box. We run through candidates by the indices in an
order as shown in Fig. 5.

That bring us at least double times speedup. An intuition understanding for the
trialling in minimal changes order strategy is that, we utilize the small change
effect and large scale effect. Small change effect means that generating the new
from the old might be much cheaper than generate from nothing if the changes
are subtle. Large scale effect means that doing things in large scale can be more
economical and efficient. The cost to systemically finish the whole is much less
than the sum of cost to separately finish each individual.

Fig. 4. An example of trialling weight patterns of active S-Boxes in minimal changes
order. Bold numbers with underbreves are items exchanged from the former weight
pattern. There are only 2 changes at each step.

274 Z. Bao et al.

Fig. 5. An example of trialling candidates within a weight pattern in the mixed-radix
Gray code order. Bold numbers with a underbreve are the unique item changed from
the former.

8 Results on Best Trails of NOEKEON and SPONGENT

8.1 Object Cipher - A Block Cipher NOEKEON

NOEKEON is a self-inverse block cipher with a block and key length of 128-bit.
It is a 16 rounds iterated cipher with a round transformation composed of trans-
formations Theta, Pi1, Gamma, Pi2 and XORing a Working Key. The round
transformation can be split into two parts - nonlinear part Gamma and linear
part Lambda = (Pi1 ◦ Theta ◦ Pi2). Gamma can be specified as the S-layer
which is a parallel execution of 32 4 × 4-bit identical S-Boxes. Lambda can be
seen as the P-layer. A full description of NOEKEON can be found in [6]. By
searching the complete space of 4-round trails (both linear and differential) with
less than 24 active S-Boxes, the designers can guarantee that there are no 4-round
differential (linear) trails with a predicted probability (bias) above 2−48 (2−25).

In this work, by adopting the proposed three optimization strategies and
making use of the symmetry properties, these statements are confirmed and fur-
ther refined. They turn to be as follow: of all 4-round differential (linear) trails,
the best has a probability (bias) equals to 2−51 (2−25). Figure 6 in AppendixB
shows one of the best 4-round differential trails. It takes 21 (1.2) hours to sys-
tematically investigate whether 4-round differential (linear) trails of weight up to
51 (25) exist on the formerly mentioned PC. Table 3 summarizes more results
about differential (linear) trails of NOEKEON we have achieved.

Besides, best 6-round and 9-round linear trails with bias 2−40 and 2−62 are
found out and Fig. 7 in AppendixB shows one of them. The 9-round linear trail is
the longest one holding with bias larger than 2−65. By observing that the internal
part in the best 6-round linear trail is iterative on a 2-round trail which is also
a sub-trail in the best 9-round, a 10-round linear trail with bias 2−68 can be
constructed.

According to the results in Table 3, the probability (bias) of best 10-round
(11-round) differential (linear) trails in NOEKEON is at most 2−131 (2−71). As
mentioned in [6], for a DC attack to exist, there must be a predictable difference
propagation over all but a few rounds with a probability significantly larger
than 2−127, and LC attacks are possible if there are predictable input-output

Speeding Up the Search Algorithm for the Best Trails 275

correlation values (2 times of bias) over all but a few rounds significantly larger
than 2−64, thus we can benefit from these results that exclude classical DC (LC)
attacks on NOEKEON.

8.2 Object Cipher - A Hash Function SPONGENT

SPONGENT is a lightweight hermetic sponge hash function with a PRESENT-
type permutation [16]. There are 13 variants with 11 kinds of permutation
width. In this work, variants with permutation width b ∈ {88, 136, 176, 240} are
considered.

By applying the three proposed optimization strategies, best differential trails
corresponding to the number of rounds in [16, Table 3] are searched. The results
suggest that finding out the unconditional best trails could help to establish more
tight upper bound on the probability of the best differential than that provided
by finding the trails with minimal number of active S-Boxes. New results are

Table 3. Comparison between results from specification of NOEKEON and results
from this work. Entries with ∗ are the updates due to this work. Note that the trails
we found are confirmed to be the best.

#Rounds NOEKEON-differential NOEKEON-linear

Spec. This Spec. This

ASN Prob. ASN Prob. ASN Bias ASN Bias

1 1 2−2 1 2−2 1 2−2 1 2−2

2 4 2−8 4 2−8 4 2−5 4 2−5

3 - - ∗13 ∗2−28 - - ∗13 ∗2−14

4 - ≤2−48 ∗22 ∗2−51 - ≤2−25 ∗21 ∗2−25

5 - - - ∗≤2−65 - - - ∗≤2−32

6 - - - ∗≤2−80 - - ∗33 ∗2−40

Table 4. Comparison between results from specification of SPONGENT and results
from this work. Entries with ∗ are the updates due to this work.

276 Z. Bao et al.

listed in Table 4. Figures 8 and 9 in AppendixB depicts two of the updated
best trails. Besides, longer differential trails are found, which could correct and
update the results listed in [16, Table 4]:

– For variants with b = 88, probability of best 17-round (18-round) differential
trail is 2−86 (2−94), which was found out within 1 min, and shown in Fig. 10
in AppendixB.

– For variants with b = 240, probability of best 44-round differential trail is
2−196, which was found within 1 min. By observing the results up to
44-round, we can conclude the following: Bw6 = 30 and for r ≥ 7, Bwr ={
Bwr−1 + 4 if r is even

Bwr−1 + 5 if r is odd
. An observation is that there is a 2-round itera-

tive trail with weight pattern (4, 5) composing the best trails, as shown in
Fig. 11 in AppendixB.

– For variants with b = 176, best 17-round (18-round) differential trail with
weight 91 (99) was found within 50 min, and shown in Fig. 12 in AppendixB.

9 Conclusion and Future Work

We improved the search algorithm for the best differential and best linear trails
by introducing three optimization strategies. Those strategies reduce the com-
plexity to a great extent by organizing candidate search patterns properly, col-
lecting more information during preceding procedures and trialling in good order,
which allowed us to find out best trails more efficiently. At the end, we briefly
overview future work.

– We trial a search pattern in an order of (w̆0, w̆1, . . . , w̆n−m, w̆−1, . . . , w̆−m+1).
As an anonymous reviewers suggested, it might also be interesting to consider
the order (w̆0, w̆1, w̆−1, w̆2, w̆−2, . . .).

– Experimental result on NOEKEON shows that search patterns that cannot be
filtered out by the information collected in preceding procedures are usually
with fat paunches, while the existing search patterns are usually with narrow
waists. That can be understood considering the diffusion property of the target
cipher. How to use this empirical knowledge to add heuristics to the search
algorithm remains unclear.

– By avoiding detailed properties of the target ciphers, our algorithm is general
to some extent, while remaining space for further improvement by utilizing
more special properties of the object ciphers.

– Strategies proposed in this paper are also helpful to generate all the trails up to
a given weight. Thus, they can be adopted when search for the best multi-
ple differential (multi-dimensional linear) distinguishers. While, we haven’t
adopted them to the case of related-key differential.

Acknowledgement. Many thanks go to the anonymous reviewers for many useful
comments and suggestions. The research presented in this paper is supported by the
National Natural Science Foundation of China (No.61379138), the “Strategic Priority
Research Program” of the Chinese Academy of Sciences (No.XDA06010701).

Speeding Up the Search Algorithm for the Best Trails 277

A Our Search Algorithm

Algorithm 4. Our Search Approach Part 1 - Framework of Our Search App-
roach
1: for n ← 1, RoundN do � n is the current number of round and RoundN

is the total of that considered for the cipher. All of the following variables are global
which can be directly accessed in each procedure. Superscript n on the shoulders of those
variables is changed with the value of n, thus for different values of n, they are different
variables.

2: w ln ← a lower bound for Bwn

3: n wn ← the number of extra values of weights larger than Bwn � Determine
the amount of pre-search information of n-round cipher, there is no pre-search information
of n-round cipher if n wn = −1

4: w un ← 0 � w un will be update as the upper bound for values
of weights at the end of procedure SearchForRounds, and thus [w ln, w un] is the range of
values of wn under which we will completely examine the existence of the search patterns.

5: Bwn ← ∞
6: wn ← w ln � wn is a global temp variable holding current weight of n-round

7: ExistentPatternsn ← ∅ � Trees of existent search patterns under wn ∈ [Bwn, w un]

8: ExistentPatternsCGn ← ∅ � Trees of existent concretized patterns under
wn ∈ [Bwn, w un]

9: SearchPatternsn ← ∅ � Temporary trees of search patterns

10: SearchPatternsCGn ← ∅ � Temporary trees of concretized search patterns
11: SearchForRounds(n)

12: Next-n: � A tag for long jump
13: end for

14: procedure SearchForRounds(n)
15: i ← −1

16: while i ≤ n wn do
17: GenerateSearchPatterns � Generate, filter and formalize search patterns

18: OrganizeSearchPatterns � Concretize and group search patterns
19: SearchFromTheNarrowest � Search in trees of organized search patterns
20: SearchPatternsn ← ∅ � Clear trees of search patterns

21: SearchPatternsCGn ← ∅ � Clear trees of concretized search patterns

22: wn ← wn + 1

23: if Bwn �= ∞ then i ← i + 1
24: end if
25: end while

26: ExistentPatternsn ←gather ExistentPatternsCGn � Gather information on

existence of search patterns W̆
n according to the information on existence of corresponding

concretized search patterns W̆n.
27: w un ← Bwn + n wn

28: end procedure

278 Z. Bao et al.

Algorithm 5. Our Search Approach Part 2 - Generate and Filter, Concretize
and Group Search Patterns

29: procedure GenerateSearchPatterns

30: while partition of wn could generate a new n-composition do

31: Partition wn into n components to form a new possible search pattern W
n =

(w1, w2, . . . , wn), which make the following hold:

32: 1. |Wn| =
∑n

i=1 wi = wn,

33: 2.
∑n−r

i=1 wi + Bwr ≤ wn for ∀r (1 ≤ r ≤ n − 1), and

34: 3. wr ≥ Bwr and W
r = (wi, wi+1, . . . , wi+r−1) ∈ ExistentPatternsr if wr ∈

[Bwr, w ur], for ∀r, i (1 ≤ r ≤ n − 1, 1 ≤ i ≤ n − r + 1), where wr =
∑i+r−1

j=i wj .

35: Find the narrowest point of W
n, let it be m. � If the cipher is involution, let

W̄
n = (wn, wn−1, . . . , w1) and w̄m̄ be the narrowest point of W̄

n. If wnxt(m) = w̄nxt(m̄), let ˘̄
W

n

be the relative-index form of W̄
n, if ˘̄

W
n ∈ SearchPatternsn, discard W

n and continue. Else, if

wnxt(m) > w̄nxt(m̄), discard W
n and W

n ← W̄
n.

36: Turn W
n = (w1, w2, . . . , wn) into its relative-index form W̆

n =

(w̆−m+1, . . . , w̆0, . . . , w̆n−m).

37: SearchPatternsn ←insert W̆
n

38: end while

39: end procedure

40: procedure OrganizeSearchPatterns

41: for all W̆
n = (w̆−m+1, . . . , w̆0, . . . , w̆n−m) ∈ SearchPatternsn do

42: asn min ← the minimal possible ASN determined by w̆0

43: asn max ← the maximal possible ASN determined by w̆0

44: for asn ← asn min, asn max do

45: for all r, r̀, (2 ≤ r < n, 1 ≤ r̀ ≤ r) do

46: if w̆0 is at the narrowest point of reduced search pattern

(w̆−r̀+1, . . . , w̆0, . . . , w̆r−r̀) then

47: Let W̆ r ← (w̆−r̀+1, . . . ,
([asn]

w̆0

)
, . . . , w̆r−r̀) and w̆r ←∑r−r̀

i=−r̀+1 w̆i, then

48: if w̆r ∈ [Bwr, w ur] and W̆ r /∈ ExistentPatternsCGr then goto next asn

49: end if

50: end if

51: end for

52: SearchPatternsCGn ←groupingInto W̆n = (w̆−m+1, . . . ,
([asn]

w̆0

)
, . . . , w̆n−m)

53: end for

54: end for

55: end procedure

Speeding Up the Search Algorithm for the Best Trails 279

Algorithm 6. Our Search Approach Part 3 - Search in Trees of Organized
Search Patterns
56: procedure SearchFromTheNarrowest

57: for all rootnode ←
([asn]

{w̆1,0, w̆2,0, . . . , w̆k,0}0
)

∈ SearchPatternsCGn do

58: asn0 ← asn
59: asn min1 ← the allowed minimal ASN determined by the minimal weight of the

first forward rounds succeeding the current rootnode

60: asn max1 ← the allowed maximal ASN determined by the maximal weight of the
first forward rounds succeeding the current rootnode

61: asn min−1 ← the allowed minimal ASN determined by the minimal weight of the
first backward rounds succeeding the forward branches of the current rootnode

62: asn max−1 ← the allowed maximal ASN determined by the maximal weight of
the first backward rounds succeeding the forward branches of the current rootnode

63: while ∃ new candidate round-output-differential od0 do
64: Generate a new od0 with the trailling in minimal changes order strategy, which

makes the following hold:

65: 1. there are asn0 active S-Boxes at the narrowest round, and
66: 2. asn1 ∈ [asn min1, asn max1], where asn1 is ASN at the first succeeding

forward round, which is computed from od0.

67: while ∃ new candidate round-input-differential id0 do
68: Generate a new id0 with the trailling in minimal changes order strategy,

which makes the following hold:

69: 1. id0 is compatible with od0 with w(id0,od0) ∈ {w̆1,0, w̆2,0, . . . , w̆k,0},
70: 2. asn−1 ∈ [asn min−1, asn max−1], where asn−1 is ASN at the first back-

ward round, which is computed from id0.
71: idListAtNarrowestPoint

w(id0,od0) ←insert id0
72: end while

73: if ∃ succeeding forward branches under noder then
74: SearchForward(od0, 1)

75: end if
76: for all w̆i,0 ∈ {w̆1,0, w̆2,0, . . . , w̆k,0} do
77: if ∃ succeeding backward branches with w̆i,0 as the narrowest point under

noder then � For simplicity henceforth, we say branches with w̆i,0 as the narrowest
point if there are nodes carry superscript including w̆i,0 on their shoulders.

78: for all id0 ∈ idListAtNarrowestPointw̆i,0 do

79: SearchBackward(w̆i,0, id0, -1)
80: end for

81: end if

82: end for
83: end while

84: end for

85: end procedure

280 Z. Bao et al.

Algorithm 7. Our Search Approach Part 4 - Search in Forward Branches

86: procedure SearchForward(idr , r)

87: for all noder ← w̆
{w̆1,0,...,w̆j,0}
r ∈ forward branches succeeding the preceding node in

SearchPatternsCGn do
88: if ∃ succeeding forward branches under noder then
89: while ∃ new candidate odr do

90: Generate a new odr with the trailling in minimal changes order strategy,
which makes the following hold:

91: 1. odr is compatible with idr with w(idr,odr) = w̆r,
92: 2. asnr+1 ∈ [asn minr+1, asn maxr+1], where asnr+1 is ASN at the suc-

ceeding forward round, which is computed from odr, and asn minr+1 (or asn maxr+1)
is determined by the minimal (or maximal) weight of nodes on the succeeding forward
branches of noder.

93: SearchForward(odr , r + 1)
94: end while
95: end if

96: if ∃ succeeding backward branches under noder or � succeeding branches under
noder then

97: if ∃ an odr compatible with idr with w(idr,odr) = w̆r then
98: if ∃ succeeding backward branches under noder then

99: for all w̆i,0 ∈ {w̆1,0, . . . , w̆j,0}, 1 ≤ i ≤ j do
100: if ∃ succeeding backward branches with w̆i,0 as the narrowest point

under noder then
101: for all id0 ∈ idListAtNarrowestPointw̆i,0 do

102: SearchBackward(w̆i,0, id0, -1)
103: end for
104: end if

105: end for
106: else
107: if this is the first time get an n-round differential trail then Bwn ← wn

108: end if

109: if n wn = −1 then goto Next-n
110: end if

111: W̆ ←delete SearchPatternsCGn � Delete current concretized search
pattern from trees of concretized search patterns under current wn

112: ExistentPatternsCGn ←insert W̆ � Save current concretized search
pattern to trees of actually existent concretized search patterns under wn ∈ [Bwn, w un]

113: end if
114: end if
115: end if

116: end for

117: end procedure

Speeding Up the Search Algorithm for the Best Trails 281

Algorithm 8. Our Search Approach Part 5 - Search in Backward Branches

118: procedure SearchBackward(w̆i,0, odr, r)

119: for all noder ← w̆
{w̆1,0,...,w̆j,0}
r ∈ backward branches succeeding the preceding node

in SearchPatternsCGn do

120: if w̆i,0 ∈ {w̆1,0, . . . , w̆j,0} then

121: if ∃ succeeding backward branches under noder then

122: while ∃ new candidate idr do

123: Generate a new idr with the trailling in minimal changes order strategy
making the following hold:

124: 1. idr is compatible with odr with w(idr,odr) = w̆r,

125: 2. asnr−1 ∈ [asn minr−1, asn maxr−1], where asnr−1 is ASN at
the succeeding backward round, which is computed from idr, and asn minr−1 (or
asn maxr−1) is determined by the minimal (or maximal) weight of nodes on the suc-
ceeding backward branches of noder.

126: SearchBackward(w̆i,0, idr, r − 1)
127: end while

128: else

129: if ∃ idr compatible with odr with w(idr,odr) = w̆r then

130: if this is the first time get an n-round differential trail then Bwn ← wn

131: end if
132: if n wn = −1 then goto Next-n

133: end if

134: W̆ ←delete SearchPatternsCGn � Delete current concretized search
pattern from trees of concretized search patterns under current wn

135: ExistentPatternsCGn ←insert W̆ � Save current concretized search
pattern to trees of actually existent concretized search patterns under wn ∈ [Bwn, w un]

136: end if
137: end if

138: end if
139: end for
140: end procedure

B Examples of Best Trails

Fig. 6. A best 4-round differential trail with weight 51 in NOEKEON

282 Z. Bao et al.

Fig. 7. A best 6-round linear trail with bias 2−40 in NOEKEON

Fig. 8. A best 15-round differential trial with weight 96 in SPONGENT with b = 136

Fig. 9. A best 10-round differential trial with weight 46 in SPONGENT with b = 176

Speeding Up the Search Algorithm for the Best Trails 283

Fig. 10. A best 17-round differential trial with weight 86 in SPONGENT with b = 88

Fig. 11. A best 44-round differential trial with weight 196 in SPONGENT with b = 240

284 Z. Bao et al.

Fig. 12. A best 18-round differential trial with weight 99 in SPONGENT with b = 176

References

1. Biham, E., Shamir, A.: Differential cryptanalysis of DES-like cryptosystems. In:
Menezes, A., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537, pp. 2–21.
Springer, Heidelberg (1991)

2. Matsui, M.: Linear cryptanalysis method for DES cipher. In: Helleseth, T. (ed.)
EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994)

3. Ohta, K., Moriai, S., Aoki, K.: Improving the search algorithm for the best linear
expression. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp. 157–170.
Springer, Heidelberg (1995)

4. Collard, B., Standaert, F.-X., Quisquater, J.-J.: Improved and multiple linear
cryptanalysis of reduced round serpent. In: Pei, D., Yung, M., Lin, D., Wu, C.
(eds.) Information Security and Cryptology. LNCS, vol. 4990, pp. 51–65. Springer,
Heidelberg (2008)

5. Daemen, J., Rijmen, V.: The Design of Rijndael - AES - The Advanced Encryption
Standard. Springer, Heidelberg (2002)

6. Daemen, J., Peeters, M., Van Assche, G., Rijmen, V.: Nessie Proposal: The Block
Cipher NOEKEON. Nessie submission (2000)

7. Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw,
M.J.B., Seurin, Y., Vikkelsoe, C.: PRESENT: an ultra-lightweight block cipher.
In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466.
Springer, Heidelberg (2007)

Speeding Up the Search Algorithm for the Best Trails 285

8. Biryukov, A., Nikolić, I.: Automatic search for related-key differential character-
istics in byte-oriented block ciphers: application to AES, Camellia, Khazad and
others. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 322–344.
Springer, Heidelberg (2010)

9. Mouha, N., Wang, Q., Gu, D., Preneel, B.: Differential and linear cryptanalysis
using mixed-integer linear programming. In: Wu, C.-K., Yung, M., Lin, D. (eds.)
Inscrypt 2011. LNCS, vol. 7537, pp. 57–76. Springer, Heidelberg (2012)

10. Fouque, P.-A., Jean, J., Peyrin, T.: Structural evaluation of AES and chosen-key
distinguisher of 9-round AES-128. In: Canetti, R., Garay, J.A. (eds.) CRYPTO
2013, Part I. LNCS, vol. 8042, pp. 183–203. Springer, Heidelberg (2013)

11. Matsui, M.: On correlation between the order of S-boxes and the strength of DES.
In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 366–375. Springer,
Heidelberg (1995)

12. Aoki, K., Kobayashi, K., Moriai, S.: Best differential characteristic search of FEAL.
In: Biham, E. (ed.) FSE 1997. LNCS, vol. 1267, pp. 41–53. Springer, Heidelberg
(1997)

13. Leurent, G.: Construction of differential characteristics in ARX designs application
to skein. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042,
pp. 241–258. Springer, Heidelberg (2013)

14. Biryukov, A., Velichkov, V.: Automatic search for differential trails in ARX ciphers.
In: Benaloh, J. (ed.) CT-RSA 2014. LNCS, vol. 8366, pp. 227–250. Springer,
Heidelberg (2014)

15. Daemen, J.: Cipher and hash function design strategies based on linear and differ-
ential cryptanalysis. Doctoral Dissertation, March 1995, K.U.Leuven (1995)

16. Bogdanov, A., Knezevic, M., Leander, G., Toz, D., Varici, K., Verbauwhede, I.:
SPONGENT: the design space of lightweight cryptographic hashing. IEEE Trans.
Comput. 62(10), 2041–2053 (2013)

17. Ehrlich, G.: Loopless Algorithms for Generating Permutations, Combinations, and
Other Combinatorial Configurations. Journal of the ACM 20(3), 500–513 (1973)

18. Knuth, D.E.: The Art of Computer Programming. Introduction to Combinatorial
Algorithms and Boolean Functions, vol. 4. Addison Wesley, Upper Saddle River
(2008)

	Speeding Up the Search Algorithm for the Best Differential and Best Linear Trails
	1 Introduction
	1.1 Our Contributions
	1.2 Organization

	2 Notations and Preliminaries
	3 Previous Works
	3.1 Matsui's Algorithm
	3.2 Moriai et al.'s Algorithm
	3.3 Aoki et al.'s Algorithm

	4 Overall Strategy and Basic Principle in Our Work
	5 Starting from the Narrowest Point Strategy
	5.1 Proposal and Justification of the Starting from the Narrowest Point Strategy
	5.2 Experimental Results of Starting from the Narrowest Point Strategy

	6 Concretizing and Grouping Search Patterns Strategy
	6.1 Proposal and Justification of the Concretizing and Grouping Search Patterns Strategy
	6.2 Experimental Results of Concretizing and Grouping Search Patterns

	7 Trialling in Minimal Changes Order Strategy
	8 Results on Best Trails of NOEKEON and SPONGENT
	8.1 Object Cipher - A Block Cipher NOEKEON
	8.2 Object Cipher - A Hash Function SPONGENT

	9 Conclusion and Future Work
	A Our Search Algorithm
	B Examples of Best Trails
	References

